天天操夜夜拍丨国产精品超清白人精品av丨天天爽天天噜在线播放丨国产精品久久久久久久福利竹菊丨色综合天天天天做夜夜夜夜做丨国内自拍xxxx18丨白人と日本人の交わりビデオ丨午夜激情在线观看丨成人18视频丨久久66热人妻偷产精品丨视频一区二区三区在线观看丨操操操插插插丨久久的久久爽亚洲精品aⅴ丨91精品一区二区三区在线观看丨aaa女人18毛片水真多丨99re在线视频精品丨超碰免费在丨中文字幕人妻无码专区app丨午夜香蕉视频丨又大又粗欧美黑人aaaaa片丨久久夫妻视频丨乌克兰性欧美精品高清丨亚洲欧美福利视频丨少妇高潮久久久久久一代女皇丨97国产高清

熱門搜索:A549    293T 金黃色葡萄球菌 大腸桿菌 AKK菌
購物車 1 種商品 - 共0元
當前位置: 首頁 > 行業資訊 > Could coffee be the secret to fighting obesity?

Could coffee be the secret to fighting obesity?

 

Date:

June 24, 2019

Source:

University of Nottingham

Summary:

Scientists have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

Scientists from the University of Nottingham have discovered that drinking a cup of coffee can stimulate 'brown fat', the body's own fat-fighting defenses, which could be the key to tackling obesity and diabetes.

 

The pioneering study, published today in the journal Scientific Reports, is one of the first to be carried out in humans to find components which could have a direct effect on 'brown fat' functions, an important part of the human body which plays a key role in how quickly we can burn calories as energy.

 

Brown adipose tissue (BAT), also known as brown fat, is one of two types of fat found in humans and other mammals. Initially only attributed to babies and hibernating mammals, it was discovered in recent years that adults can have brown fat too. Its main function is to generate body heat by burning calories (opposed to white fat, which is a result of storing excess calories).

 

People with a lower body mass index (BMI) therefore have a higher amount of brown fat.

 

Professor Michael Symonds, from the School of Medicine at the University of Nottingham who co-directed the study said: "Brown fat works in a different way to other fat in your body and produces heat by burning sugar and fat, often in response to cold. Increasing its activity improves blood sugar control as well as improving blood lipid levels and the extra calories burnt help with weight loss. However, until now, no one has found an acceptable way to stimulate its activity in humans.

 

"This is the first study in humans to show that something like a cup of coffee can have a direct effect on our brown fat functions. The potential implications of our results are pretty big, as obesity is a major health concern for society and we also have a growing diabetes epidemic and brown fat could potentially be part of the solution in tackling them."

 

The team started with a series of stem cell studies to see if caffeine would stimulate brown fat. Once they had found the right dose, they then moved on to humans to see if the results were similar.

 

The team used a thermal imaging technique, which they'd previously pioneered, to trace the body's brown fat reserves. The non-invasive technique helps the team to locate brown fat and assess its capacity to produce heat.

 

"From our previous work, we knew that brown fat is mainly located in the neck region, so we were able to image someone straight after they had a drink to see if the brown fat got hotter," said Professor Symonds.

 

"The results were positive and we now need to ascertain that caffeine as one of the ingredients in the coffee is acting as the stimulus or if there's another component helping with the activation of brown fat. We are currently looking at caffeine supplements to test whether the effect is similar.

 

Once we have confirmed which component is responsible for this, it could potentially be used as part of a weight management regime or as part of glucose regulation programme to help prevent diabetes."

 

Story Source:

 

Materials provided by University of Nottingham. Note: Content may be edited for style and length.

 

Journal Reference:

 

Ksenija Velickovic, Declan Wayne, Hilda Anaid Lugo Leija, Ian Bloor, David E. Morris, James Law, Helen Budge, Harold Sacks, Michael E. Symonds, Virginie Sottile. Caffeine exposure induces browning features in adipose tissue in vitro and in vivo. Scientific Reports, 2019; 9 (1) DOI: 10.1038/s41598-019-45540-1

 

 

 

Mitochondrial Homeostasis and Cellular Senescence

Panagiotis V.S. Vasileiou 1, Konstantinos Evangelou 1, Konstantinos Vlasis 2, Georgios Fildisis 3, Mihalis I. Panayiotidis 4OrcID, Efstathios Chronopoulos 5, Panagiotis-Georgios Passias 1, Mirsini Kouloukoussa 1, Vassilis G. Gorgoulis 1,6,7,8 and Sophia Havaki 1,*

1

Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

2

Department of Anatomy, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

3

Nursing School, National and Kapodistrian University of Athens, 123 Papadiamantopoulou Str., 11527 Athens, Greece

4

Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST Newcastle, UK

5

Second Department of Orthopaedics, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

6

Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester MP13 9PL, UK

7

Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527 Athens, Greece

8

Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece

*

Author to whom correspondence should be addressed.

Received: 15 June 2019 / Accepted: 5 July 2019 / Published: 6 July 2019

Abstract: Cellular senescence refers to a stress response aiming to preserve cellular and, therefore, organismal homeostasis. Importantly, deregulation of mitochondrial homeostatic mechanisms, manifested as impaired mitochondrial biogenesis, metabolism and dynamics, has emerged as a hallmark of cellular senescence. On the other hand, impaired mitostasis has been suggested to induce cellular senescence. This review aims to provide an overview of homeostatic mechanisms operating within mitochondria and a comprehensive insight into the interplay between cellular senescence and mitochondrial dysfunction.

Keywords: cellular senescence; mitochondria; mitostasis; mitochondrial dynamics

1. Introduction

Cellular senescence is part of a range of cell responses towards extrinsic and/or intrinsic noxious insults that challenge homeostasis, mainly genome and proteome integrity (Figure 1) [1]. The senescent cell is a stressed or damaged, yet viable, cell that has entered a non-proliferative state while still remaining metabolically active. Historically, the first condition described leading to senescence was exhaustion of replication potential due to serial passaging leading to telomere attrition [2]. Below a critical length of telomere, a deoxyribonucleic acid (DNA) damage response is triggered imposing a type of senescence termed replicative senescence (RS). Except for telomere attrition, a wide range of other telomere-independent stimuli, such as oxidative stress, activated oncogenes (termed oncogene induced senescence/OIS), irradiation, genotoxic drugs, cell–cell fusion, epigenetic modifiers, or perturbed proteostasis, have been recognized as powerful inducers of cell senescence. Senescence can also be induced by failure to repair DNA damage [1,3,4]. Senescence imposed by telomere-independent stimuli is more acute and is known as stress induced premature senescence (SIPS) [4,5,6,7,8]. Mechanistically, several molecular pathways have been implicated that often depend on the nature of the initiating event and/or cell type [9,10]. Two best studied molecular axes involve p53/p21WAF1 and Rb-p16INK4A that can also reinforce senescence via a ROS-dependent positive feedback mechanism [5,11,12]. Notably, the p53/p21WAF1 pathway has been suggested to initiate the senescence response, followed by the action of p16INK4A to maintain this condition [13].

Cells 08 00686 g001 550 Figure 1. Maintaining homeostasis is the cornerstone for cells’ normal function, ensuring organismal physiology. Intriguingly, cells are constantly exposed to intrinsic and extrinsic stressors that jeopardize cellular integrity and activate a variety of response modules, through complex and highly sophisticated biochemical networks. Depending on the intensity and duration of the stressor, cellular response mechanisms either manage to neutralize the adverse effects of stress, thus achieving complete recovery and survival, or lead to death in case of non-repairable damage. Between these two opposite outcomes reminiscent of the swinging of a pendulum, cellular senescence enters the scene.

A variety of cellular and molecular hallmarks of senescence have been so far identified, including resistance to apoptosis, morphological and structural features, epigenetic alterations, chromatin rearrangement, and a modified transcriptome program [9,14]. Indeed, senescent cells are known for their increased secreting activity [5]. Particularly, they carry out a complex pro-inflammatory response known as senescence-associated secretory phenotype (SASP), which is mediated by the transcription nuclear factor-κB (NF-κB) and includes the secretion of a spectrum of pro-inflammatory factors, such as interleukins, chemokines, growth factors, proteases, cell surface molecules, and extracellular matrix degrading proteins, that influence the surrounding microenvironment. Respectively, the constituents of SASP act in an autocrine and paracrine manner contributing in various developmental programs or pathophysiological conditions [4,5,6,9,15,16]. Closely related with SASP, senescent cells also exhibit apparent alterations of cellular metabolism, corresponding to abnormalities in morphology, mass, and functionality of their organelles [17].

At this point, and by virtue of their central bioenergetic role and their involvement in other physiological processes such as redox signaling, mitochondria enter the scene as potential key players during cellular senescence [18,19]. Cumulative data support this notion. Mitochondrial oxidative phosphorylation (OXPHOS) deterioration has been reported to be primarily involved in the early stages of cellular senescence, using diverse cellular senescence models [20,21,22,23,24,25]. Senescent cells are characterized by increased production of reactive oxygen species (ROS), mainly attributed to dysfunctional mitochondria [26]. Indeed, in already senescent cells, mitochondrial ROS can aggravate cellular senescence by enhancing the DNA damage and the DNA damage response signaling pathway (DDR) [11]. Noteworthy, mitochondrial deoxyribonucleic acid (mtDNA) is highly vulnerable to ROS due to proximity to the generation site, whilst damaged mtDNA in turn, impairs OXPHOS function, thus further enhancing ROS release [17]. Furthermore, senescent cells exert massive metabolic changes related to mitochondrial metabolites [e.g., oxidized to reduced form of nicotinamide adenine dinucleotide ratios (NAD+/NADH) or tricarboxylic acid (TCA) cycle metabolites], and dynamics (namely fusion, fission and mitophagy) [18,19]. Additionally, mitochondrial biogenesis is up-regulated during senescence [11,27]. Notably, despite the increased mitochondrial pool, the overall adenosine triphosphate (ATP) production by oxidative phosphorylation is reduced during senescence [28]. Furthermore, mitochondria of senescent cells show decreased membrane potential, accelerated ROS production and are prone to leakage of mitochondrial enzymes [29,30].

Not only is mitochondrial dysfunction an epiphenomenon of senescence, but also dysfunctional mitochondria can indeed drive the senescent phenotype. Perturbation of mitochondrial homeostasis promotes the establishment and maintenance of cellular senescence through various mechanisms including excessive mitochondrial ROS production, imbalanced mitochondrial dynamics, electron transport chain defect, bioenergetics imbalance and increased 5’ adenosine monophosphate-activated protein kinase (AMPK) activity, altered mitochondrial metabolite profile (e.g., NAD+), and dysregulated mitochondrial calcium homeostasis [31]. These mitochondrial signals trigger p53/p21WAF1 and/or Rb-p16INK4A pathways, ultimately leading to cellular senescence and stabilizing cell-cycle arrest [11,31,32,33,34]. A number of studies indicate that mitochondrial-derived ROS can accelerate telomere shortening, thus causing premature senescence [29], triggering paracrine senescence [35], or inducing and maintaining senescence through sustained DNA damage response [11,29,36]. Strikingly, clearance of mitochondria negatively impacts the development of many senescence-associated features, including the SASP, while maintaining cell-cycle arrest [37]. Recently, the induction of mitochondrial dysfunction was reported to generate a distinct (i.e., mainly in terms of SASP) type of senescence termed mitochondrial dysfunction-associated senescence (MiDAS) [38].

Apparently, a growing body of evidence underscores a bidirectional link between cellular senescence and these multifaceted organelles. This interplay seems to be best described as a vicious circle, involving a number of feedback loops between the players, rather than a linear cause and effect relationship [19]. Notably, the implication of mitochondria in the context of cellular senescence extends far beyond their contribution in ROS production and oxidative stress. In view of recent outstanding findings regarding the role of mitochondria in cellular senescence, herein we sought to present an overview of mitochondrial homeostatic mechanisms along with evidence implicating mitostasis aberrations in cellular senescence or vice versa.

2. Mitostasis: An Overview of the Mitochondrial Genome and Proteome Maintenance Mechanisms

Mitostasis is a term used to encompass all the mechanisms implicated in the maintenance of normal mitochondrial function. It refers both to genome and proteome integrity of mitochondrion.

2.1. Mitochondrial Genome Maintenance Mechanisms

Mammalian mitochondria biogenesis and function require the coordinated action of two genomes: nuclear and mitochondrial [39].

Mammalian mtDNA is a small, adenine/thymine-rich, circular molecule consisting of 16,569-base pairs [40]. Its small size confers two benefits: it enhances rapidity and facilitates accuracy of replication [41]. MtDNA contains 37 genes coding for 2 ribosomal nucleic acids, 22 transfer RNAs, and 13 essential protein subunits of the oxidative phosphorylation system. Each organelle contains two to five copies of mtDNA, therefore each cell has thousands (approximately 1000–l0,000) apparently identical copies of mtDNA [42]. Despite its small size and due to its polyploid nature, mtDNA can represent approximately 1% of the total DNA in some cells [43].

The replication of mtDNA is not limited to the S phase, but occurs throughout the cell cycle. Of interest, two modes of mtDNA replication operate in mammalian; the initially described, “orthodox”, strand-asymmetric mechanism [44], and the unidirectional, synchronous leading- and lagging-strand replication cells [45].

A number of surprising features characterizing the mitochondrial genome have come to light, such as dense gene packing, low methylation levels, relaxed codon usage, and a variant genetic code [40,46,47]. In mammalian mtDNA, the addition of a third DNA strand (0.5 kb), termed “7S DNA”, forms the displacement-loop (d-loop), a short triple-stranded, non-coding, regulatory region of mtDNA responsible for transcription and replication initiation by the mitochondria-specific polymerase-γ (pol γ) [48,49]. In addition, d-loop has been implicated in protein recruitment, mtDNA organization and metabolism, as well as dNTP pools maintenance throughout the cell cycle [50,51,52]. Importantly, many but not all molecules of mtDNA bear this third strand of DNA. In fact, the abundance of 7S-DNA varies greatly between species and cell type, being present on 1–65% of mtDNA molecules [53,54]. Strikingly, other molecules contain RNA as the third strand. The RNA of these R-loops is similar in length and location to the d-loop and is complementary to 7S DNA. Of clinical relevance, in cells with a pathological variant of ribonuclease H1 (an enzyme that degrades RNA hybridized to DNA) associated with mitochondrial disease, R-loop numbers are low and there is mitochondrial DNA aggregation, strongly suggesting a role for the R-loop in mtDNA organization and segregation [55].

MtDNA is packaged into protein–DNA complexes called nucleoids [56,57]. The main DNA packaging protein of nucleoids is the mitochondrial transcription factor A (TFAM), a member of the high-mobility group (HMG) of proteins [58,59]. Other factors exerting central role in the maintenance of the mitochondrial genome’s integrity are the nuclear respiratory factors 1 and 2 (NRF 1/2), which are implicated in the transcriptional control of mtDNA, the peroxisome proliferator-activated receptor gamma co-activator one alpha (PGC1α), which stimulates mitochondrial biogenesis in the basis of cellular energy metabolism regulation, as well as sirtuins (SIRT) [60,61,62]. Mitochondrial sirtuins—SIRT3, SIRT4, and SIRT5—are NAD+-dependent deacetylases, deacylases, and ADP-ribosyl transferases. Their enzymatic activity is indirectly (through NAD+) linked to the metabolic state of the cell. Importantly, they also regulate non-metabolic aspects of mitochondrial biology, thus ensuring that mitochondrial homeostasis is achieved during stress conditions [63].

The main polymerase functioning within mitochondria is polymerase γ (Pol γ), a heterotrimer comprised of one pol γ catalytic subunit (p140), which exerts a DNA polymerase activity, a 3-5 exonuclease activity and a 5-deoxyribose lyase activity, and two accessory subunits (p55). Contrary to the high nucleotide selectivity and exonucleolytic proofreading of the isolated pol γ catalytic subunit, p55 dimeric exerts reduced fidelity of DNA replication by promoting extension of mismatched DNA termini [64]. Importantly, the general notion that pol γ is uniquely responsible for replication and repair of mitochondrial DNA, has been recently challenged, since several polymerases are now proposed to be present within these organelles [65]. For example, it has been demonstrated that Polβ is involved in mtDNA maintenance. At least in some tissues, Polβ interacts with nucleoid proteins such as TWINKLE helicase, mitochondrial single-strand DNA-binding protein 1 (SSBP1 or mtSSB), and TFAM, thus contributing to mtDNA repair machinery [66]. Another example of such a player is PrimPol, a polymerase which also acts as a primase, having roles in both nuclear and mitochondrial DNA maintenance. PrimPol identified in human mitochondria exerts de novo DNA synthesis capability and oxidative lesions tolerance. Moreover, it seems to play additional roles in the repair of damaged DNA in the absence of ongoing replication [67,68]. Nevertheless, the exact role of all polymerases identified within mitochondria is not yet clear [65].

The integrity of mtDNA, which is crucial for mitostasis, is maintained by multiple DNA repair pathways and through the selective degradation of irreparable or heavily damaged DNA. Indeed, stability of the mitochondrial genome is fulfilled through a 3-level defense system, including (a) the architectural organization of mtDNA, (b) DNA repair mechanisms that are activated within mitochondria when mtDNA damage occurs, and (c) the cleavage of damaged mtDNA through mitochondrial dynamic processes [69]. Importantly, our knowledge regarding DNA repair pathways operating within these multifaceted organelles has been expanding during the last decades, from the inceptive belief of no available repair mechanisms, through the subsequent identification of a limited repair repertoire, to the recent and constantly evolving awareness of a sufficient and vigorous “arsenal” against mitochondrial genome damage [70]. Except for the direct reversal (DR) of certain lesions and short-patch base excision repair (BER) [71,72,73], mitochondria also exert long-patch BER activity and translesion synthesis (TLS) capacity for the repair of single-strand breaks, as well as homology recombination (HR), non-homologous (NHEJ) and microhomology-mediated end-joining (MMEJ) activities for the repair of double-strand lesions [67,74,75,76,77,78,79,80]. Additionally, a novel mismatch repair (MMR) pathway, distinctive from the nuclear one, has been shown to be also present within mitochondria [81,82]. However, the level of proficiency of each one of these repair mechanisms, regarding their intra-mitochondrial functionality, has not been fully elucidated and remains to be further studied in order to characterize key players and regulators involved, both in vitro and in vivo. Collectively, with the exception of nucleotide excision repair (NER) and Fanconi anemia (FA) pathways which have not yet been identified within mitochondria, it appears that a broad range of DNA repair mechanisms that operate in the nucleus contribute also to the integrity of the mitochondrial genome. To date, the only hint regarding the NER pathway in the mitochondria is the localization of the transcription-coupled NER proteins CSA and CSB (Cockayne syndrome proteins) to mitochondria upon oxidative stress [83]. Interestingly, recent evidence supports that multiple proteins in the FA pathway are involved in the suppression of inflammasome activation by decreasing mitochondrial ROS production, and are required for mitophagy (clearance of damaged mitochondria) through interaction of FANCC (Fanconi anemia complementation group C) protein with Parkin, thus contributing to mitochondrial and cell homeostasis [84].

2.2. Mitochondrial Proteome Maintenance Mechanisms

A wide range of proteins are involved in the organization, regulation and replication of the mitochondrial genome and the assembly of these multifaceted organelles.

Proteomic studies, driven by large-scale approaches, including in-depth protein mass spectrometry, microscopical, computational and integrative machine learning methods, revealed that mitochondria contain approximately 1000 (in yeast) to 1500 (in humans) different proteins [85,86,87]. From a functional perspective, mitochondrial and mitochondrial-associated proteins are mainly distributed/classified in those involved in energy metabolism (15%), protein synthesis, transport, folding and turnover functions (23%), and genome maintenance and transcription (12%) [88]. Other mitochondrial functions, including structural, signaling and redox processes, transport of metabolites, as well as iron, amino-acid and lipid metabolism, occupy the remaining 30% of the mitochondrial protein armament. Of note, for more than 19% of mitochondrial proteins, no reliable information on their function is available [85,89].

Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes [90]. Only 13 (about 1%) from the total number of peptides that compose the mitochondrial proteome are encoded by the mitochondrial DNA and synthesized in the mitochondrial matrix, while the remaining 99% of the mitochondrial proteins are encoded by nuclear genes [85]. Thus, the larger part of the mitochondrial proteins needs to travel in an unfolded state from the cytosol into the mitochondrion [86,91,92]. Trafficking and import of mitochondrial precursor proteins (pre-proteins) is mainly mediated by two mitochondrial translocases, namely the Translocase of the Outer Membrane (TOM) and the Translocase of the Inner Membrane (TIM) complexes [93,94]. Importantly, it has become clear that aberrant routes bypassing the preprotein translocases pathways also exist. In this regard, four principal pathways that direct proteins to their intramitochondrial destination have been so far recognized: the presequence pathway to the matrix and inner membrane, the carrier protein pathway to the inner membrane, the redox-regulated import pathway into the intermembrane space, and the β-barrel pathway into the outer membrane [90].

Proper assembly and quality control of mitochondrial proteins is further monitored and executed by a group of molecular chaperones (also known as “heat shock proteins”) which function in collaboration with a group of proteolytic enzymes (proteases) [94,95,96]. In fact, mitochondria possess their own group of chaperones and proteases stationed in the four compartments of the organelle (i.e., the outer membrane, the intermembrane space, the inner membrane and the matrix) [97,98,99]. These compartment-specific chaperones perform multiple functions important for mitochondria biogenesis and maintenance [100,101]. First, they are essential constituents of the mitochondrial protein import machinery, thus enabling transmembrane trafficking of these macromolecules [102]. Second, molecular chaperones are responsible for proper folding of nascent polypeptides and have a role in intra-mitochondrial protein synthesis [95,103,104]. Third, they protect mitochondrial proteins against denaturation and are actively involved in disaggregation and refolding/remodeling of protein aggregates formed under stress conditions [95]. Of note, an additional specific task for mitochondrial chaperones is their involvement in the maintenance and replication of mitochondrial DNA [105]. The two most dynamic networks of mitochondria chaperones are the mt-Hsp70 (an Hsp70 family member) and the multimeric Hsp60-Hsp10 machineries [90]. The former assists translocation of preproteins across both the outer and inner mitochondrial membranes via an ATP-dependent process, whereas the latter is required for the folding of new protein precursors [106,107]. Chaperone Hsp78 (a member of the ClpB/Hsp104 family) is also implicated in mitostasis, fulfilling an essential role for the respiratory chain reaction and the mitochondrial genome’s integrity under severe stress [108]. In particular, Hsp78 in cooperation with co-chaperones (e.g., Hsp70) drives restoration of the original mitochondrial network/morphology or the translation and synthesis of mitochondrial DNA, upon heat shock [104,109]. Another molecular chaperone identified to be localized in the mitochondrial matrix is TRAP1 (tumor necrosis factor receptor-associated protein 1), a Hsp90-like chaperone, which is a critical regulator of a variety of physiological functions, including cell proliferation, differentiation, and survival [110,111]. Among other tasks, TRAP1 regulates the metabolic shift between oxidative phosphorylation to aerobic glycolysis (a hallmark of cancerous cells’ metabolism, called “Warburg Effect”) [112]. Interestingly, TRAP1 expression is up-regulated in mitochondria of various tumor cells, but is down-regulated in mitochondria of corresponding normal tissues [113]. Furthermore, TRAP1 prevents cell death induced by ROS accumulation or mitochondrial permeability transition pore opening [114,115,116].

The mitochondrial protein quality control surveillance mechanism is further supported by a complex network of mitochondrial proteases, which monitor all four mitochondrial compartments against deleterious accumulation of misfolded, misassembled or unfolded proteins [97]. Among a plethora of enzymes, this group of localized proteases includes: a) the ATP-dependent proteases, namely, the LON protease, the Clp Protease Proteolytic subunit (CLPP) and the presequence protease (PITRM1), located in the matrix, b) the mitochondrial AAA (ATPases Associated with diverse cellular Activities) and PARL (Presenilins-associated rhomboid-like protein) proteases of the inner mitochondrial membrane; and c) the two ATP independent proteases, the ATP23 and HTRA2, and the mitochondrial oligopeptidase M (MEP) which reside in the intermembrane space [94,97,117,118]. Collectively, human mitodegradome consists of at least 25 exclusively mitochondrial components that can be grouped into three different catalytic classes: (a) 2 Cys proteases, (b) 15 metalloproteases and (c) 8 Ser proteases [117]. Depending on their function, location as well as structural and proteolytic characteristics, mitochondrial proteases (mitoproteases) can be divided into two groups. The first group is formed by 20 “intrinsic mitoproteases”, the functional activity of which is mostly performed in the mitochondrion; the second group includes five catalytically deficient but functionally proficient mitochondrial proteins, termed “pseudo-mitoproteases”. Even though these pseudo-mitoproteases lack some key residues for catalysis, they exert a regulatory effect on homologous proteases. A discrete group comprising at least 20 proteases are transiently translocated to mitochondria to perform additional proteolytic activities (mainly related to apoptosis or autophagy), under certain circumstances (i.e., in response to excessive stress) [117]. Importantly, the role of mitoproteases in mitochondrial homeostasis extends far beyond their basic function as proteolytic and degradative enzymes. By ensuring proper protein import, maturation and processing, influencing the half-lives of key regulatory proteins, and activating/deactivating proteins essential for core mitochondrial activities in a highly specific and regulated manner, mitoproteases have been recognized as key regulators of mitochondrial gene expression, mitochondrial biogenesis and dynamics, mitophagy and apoptosis. Furthermore, new evidence highlights the impact of impaired or dysregulated function of mitochondrial proteases in the control of ageing and longevity [119,120,121,122,123,124].

Recently, an additional role for the cytosol-localized ubiquitin-proteasome system (UPS), a key component of the cellular proteostasis network (PN), has begun to emerge regarding mitostasis. Particularly, UPS has been implicated in protein quality control of the mitochondrial outer membrane or protein import into the organelle [125,126,127]. Despite the fact that no specific mitoproteases have been identified so far at the outer mitochondrial membrane, a number of ubiquitin ligases have been found to reside to the cytosolic side of this compartment, including the mitochondrial ubiquitin ligase MITOL [also known as membrane-associated ring finger 5 (MARCH-V)], the mitochondrial E3 ubiquitin protein ligase 1 (MULAN), and the mitochondrial distribution and morphology protein 30 (Mdm30) [128]. Of note, UPS is also involved in mitochondrial fusion and fission [94,129,130,131,132,133,134]. Since the mitochondrial outer membrane accommodates several proteins involved in mitochondrial morphology and dynamics, and given the crucial role of mitochondrial morphology and dynamics for cell cycle progression and/or cell fate, it becomes prevalent how important the protein quality control of this specific mitochondrial compartment is [135,136,137]. Consistent with its contribution in controlling the outer membrane protein quality is the role of UPS in the regulation of the proteome of other mitochondrial compartments, such as the matrix (oligomycin sensitivity-conferring protein/OSCP, component of the mitochondrial membrane ATP synthase), the intramembrane space (endonuclease G), and the inner membrane (Uncoupling Protein-2/UCP2 and Uncoupling Protein-3/UCP3) [138,139,140].

Of great importance, during impaired mitochondrial function and/or instability of the mitochondrial proteome, cells can employ a specific ubiquitin-proteasome mitochondrial stress response known as mitochondrial UPR (UPRmt). This mitochondrial stress response mechanism is characterized by the induction of mitochondrial proteostasis machinery (such as mitochondrial molecular chaperones and proteases) as well as anti-oxidant genes to limit damage due to increased generation of reactive oxygen species [141,142]. UPRmt provides a link between mitochondrial survival pathways and the multitasking UPS [94]. In case of irreversible impairment of mitostasis, UPRmt induces outer mitochondrial membrane-associated degradation and/or mitophagy or even apoptosis [94,97].

2.3. Mitochondrial Dynamics

Another aspect regarding the maintenance of mitochondrial homeostasis is mitochondrial dynamics, a term used to encompass three main events: fusion, fission, and mitophagy (i.e., selective mitochondrial autophagy) [143,144]. Fusion dilutes and rearranges the matrix content of a damaged mitochondrion (e.g., a mitochondrion containing unfolded proteome or mutated DNA) with a healthy one, whereas fission partitions damaged material to daughter organelles, thus functioning as mitochondrial quality control mechanisms. During cell cycle progression, mitochondria typically elongate in the G1/S phase, in order to ensure greater ATP supply required to sustain cell duplication, and fragment in the G2/M phase to be equally divided to daughter cells as well as to partition damaged material to daughter organelles [145,146,147,148]. A tightly controlled balance between fission and fusion events is required to ensure normal mitochondrial and cellular functions. Notably, the relative rates of fusion and fission mainly define mitochondrial architecture. Furthermore, both these processes are closely related to the biochemical and metabolic cell status [145,149,150].

In mammalian cells, mitochondrial fusion is primarily orchestrated by large dynamin-related GTPases termed mitofusin 1 (MFN1) and mitofusin 2 (MFN2), plus optic atrophy protein 1 (OPA1) [151,152]. MFN1 and MFN2 are transmembrane GTPases located in the outer mitochondrial membrane (OMM) and their primary function is to mediate the first step of mitochondrial fusion (fusion of the OMM), whereas OPA1 protein, a third GTPase of the dynamin family, is situated within the intermembrane space tightly associated with the inner mitochondrial membrane (IMM). Its primary function is to mediate fusion of the IMM. In addition, OPA1 has multiple roles, namely in maintaining cristae structure within the mitochondria, in maintaining inner membrane (IM) integrity and IM potential, and in preventing release of cytochrome c from the cristae [153]. The core components of mitochondrial fission (division) machinery are dynamin-related protein 1 (Drp1), mitochondrial fission 1 protein (Fis1), mitochondrial fission factor (Mff), and mitochondrial dynamin proteins of 49 and 51 kDa (MiD49/51) [154]. In addition to these mitochondrial components, the endoplasmic reticulum (ER) and actin cytoskeleton also contribute in mitochondrial division [154]. If the above fails, mitophagy is the next level of defense, ensuring the selective degradation of damaged mitochondria. The best-known pathway mediating mitophagy is the one that depends on the serine/threonine kinase PINK1 (phosphatase and tensin homolog induced putative kinase 1) and Parkin, an E3 ubiquitin ligase [155]. The former localizes to mitochondria while the latter resides in the cytosol. Under normal steady-state conditions, PINK1 undergoes a continuous import and sequential proteolysis cycle. This well-orchestrated process yields very low to undetectable levels of PINK1 on healthy mitochondria. PINK1 is stabilized specifically on the outer membrane of damaged mitochondria (e.g., due to depolarization or blocking mitochondrial import) flagging them for elimination. In particular, it activates Parkin’s E3 ubiquitin ligase activity, and recruits Parkin to the dysfunctional mitochondrion. Then, Parkin ubiquitinates outer mitochondrial membrane proteins and drives mitophagy to completion through a positive feedback-loop [156].

3. Cross-Talks between Impaired Mitostasis and Cellular Senescence

3.1. Impaired Mitochondrial Biogenesis and Cellular Senescence

Inefficient maintenance of the mitochondrial genome’s integrity due to defects/errors in the mtDNA replication machinery and/or failure in the repair of mtDNA damage leads to impaired mitochondrial biogenesis, mitochondrial dysfunction and bioenergetic failure of the cell. Despite the well-documented role of mutated mtDNA as a cause of different types of mitochondrial diseases [157], its impact as a driver of senescence is less investigated. Early studies, based on restriction enzyme analysis of mtDNA in fibroblasts undergoing replicative senescence, excluded the presence of deletions, insertions rearrangements, or single base changes [158]. Nevertheless, it was more recently shown in vitro that mtDNA-depleted cells display senescent phenotypes (resistance to cell death, increased SA-β-gal activity, lipofuscin accumulation), implicating the potential involvement of mtDNA damage in cellular senescence [159]. Indeed, current knowledge supports that all of the five nuclear-derived transcription factors that govern mitochondrial biogenesis, POLγ, PGC-1α, NRF-1/2, sirtuins, and TFAM have been somehow involved in cellular senescence [60].

Particularly, both the mitochondrial mass and the mRNA levels of PGC1α and NRF-1, were found to increase during replicative senescence in vitro [160]. This upregulation was attributed to de novo synthesis of the nuclear transcriptional factors as a compensatory response to increased ROS production and the impaired membrane potential [160]. On the other hand, overexpression of the transcriptional co-activator PGC-1α in human fibroblasts resulted in an increase of the mitochondrial encoded marker protein COX-II, consistent with the ability of PGC-1 to increase mitochondrial number, and accelerated the rate of cellular senescence [161].

In a model of OIS, oncogenic Ras induced multiple regulators of mitochondrial biogenesis, including NRF2a, PGC1α, PGC1β, and TFAM. Strikingly, even though the increased mRNA levels were documented two days after the induction of oncogenic Ras, the expression of these genes was even higher when the cells had established a full senescent state. Of note, newly formed mitochondria in Ras-senescent cells were dysfunctional, with compromised ATP generation and increased ROS, due to the continuous oncogenic stress [162]. At variance with these findings, in mice with dysfunctional telomeres, p53-dependent PGC1α and PGC-1β repression was shown to mediate cellular growth arrest [163,164]. PGC1 down-regulation resulted in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and decreased expression of ROS detoxifying enzymes. Enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration.

In human cells and POLGD257A mutated mice (i.e., a mutation in the proofreading domain of the mtDNA polymerase PolG), mitochondrial compromise due to genotoxic stress, caused by mtDNA depletion or accelerated rate of mtDNA mutations, has been associated with the induction of cellular senescence with a distinct secretory phenotype, one that lacks the IL-1-dependent inflammatory arm [38]. Importantly, elimination of the mitochondrial sirtuins SIRT3 and to a lesser extent SIRT5, but not other sirtuins, drove the senescent phenotype. In addition, while SIRT3 shRNA induced senescence in wild-type (WT) mouse embryonic fibroblasts (MEFs), MEFs from SIRT3 knockout mice did not senesce, thus suggesting that embryonic versus post-development acute loss of SIRT3 can have different effects [38]. Of great importance, mitochondrial dysfunction has been found to upset the balance of NAD+ (the oxidized form of nicotinamide adenine dinucleotide), a coenzyme that, besides its role in redox metabolism and cell signaling, also serves as a co-factor for sirtuins [165]. At the same time, both mitochondrial sirtuins and cytosolic NAD+ depletion have been implicated in the induction of premature senescence-like phenotype [38,166,167,168], therefore further underscoring the possible role of mitochondrial biogenesis impairment in cellular senescence through discoordination of energy metabolism [19].

Furthermore, in accordance with the notion that increased mitochondrial oxidative metabolism is a feature of cellular senescence, recent evidence suggests that the metabolic shift (i.e., increased mitochondrial oxidative metabolism) which characterizes cellular senescence, occurs in parallel with enhanced mitochondrial biogenesis [11,169]. Mechanistically, increased mitochondrial content was found to be regulated through a newly identified pathway, involving mechanistic target of rapamycin (mTOR)-dependent activation of PGC-1β, a key player in mitochondrial biogenesis [37]. It was also demonstrated that the reduction in mitochondrial content, by either mTORC1 inhibition or PGC-1β deletion, prevents senescence and attenuates SASP and ROS-dependent persistence of DDR [37].

Another cornerstone of mitochondrial biogenesis and maintenance of the mitochondrial genome’s integrity is the nuclear-encoded mitochondrial proteins. Notably, nuclear DNA is under the constant threat of oxidative damage due to ROS production, and from this point of view mitochondria seem to have a great impact as major contributors of oxidative stress. Nevertheless, the role of mitochondria extends far beyond the well-established impact of mitochondrial ROS as nuclear DNA damaging factors that activate a DDR and induce senescence [11,162]. Indeed, excessive mtDNA depletion can induce a reprogramming of nuclear gene expression patterns including genes involved in metabolism, stress response and growth signaling, termed “retrograde response” [170]. Dysfunctional mitochondria can actively secrete multiple forms of damage associated molecular patterns (DAMPS)—also known as mitochondrial alarmins—among of which are mtDNA and TFAM (the principal regulator of mtDNA transcription and stabilization). These molecules exit the mitochondrial compartment, enter the cytoplasm or the extracellular space, and bind to pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and NOD-like receptors (NLRs), thus activating the immune system and triggering a significant pro-inflammatory response [171,172]. Among others, cytosolic mtDNA can be recognized by and engage the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway which has been recently identified as a crucial regulator of senescence and the SASP [173]. Of great importance, cytochrome c, which under normal conditions is restricted within the mitochondrial intermembrane space where it functions as an electron carrier in the electron transport chain and as a scavenger of ROS, has also been identified as capable of serving as DAMP [171,172]. Indeed, cytochrome c seems to exert a biphasic role: apoptogenic or immunomodulatory. Upon stimuli, the release of cytochrome c into the cytoplasm is considered to be a critical event to facilitate the inflammation-free process of apoptosis, whereas when translocated extracellularly cytochrome c functions as a mitochondrial DAMP eliciting an inflammatory response [171,172]. Unfortunately, current knowledge regarding the spatiotemporal role of cytochrome c as a DAMP is still in its infancy and more studies are needed to elucidate the underlying molecular mechanisms.

It has also been demonstrated that a functional link between mitochondria and telomeres exists, suggesting a crosstalk between replicative senescence and mitochondria, with mitochondrial biogenesis holding a protagonist role [163]. Briefly, according to the proposed model, telomere-dysfunction-induced p53 represses the PGC network and compromises mitochondrial biogenesis. Specifically, in mice with dysfunctional telomeres, p53-mediated cellular growth arrest becomes activated, in turn repressing PGC-1α and PGC-1β, master regulators of metabolic and mitochondrial processes [163,164]. This results in reduced mitochondrial mass, impaired mitochondrial biogenesis, compromised OXPHOS and respiration with decreased ATP generation capacity, and down-regulated expression of ROS detoxifying enzymes. However, enforced telomerase reverse transcriptase (TERT)—the catalytic subunit of the telomerase complex—or PGC-1α expression or germline deletion of p53 substantially rescues PGC network expression, mtDNA content and mitochondrial respiration. Additionally, it has been proposed that telomerase protects mitochondria against oxidative stress through a telomere length-independent function. In particular, TERT is reversibly excluded from the nucleus upon both acute and chronic oxidative stress conditions, in a dose- and time-dependent manner, exported to the cytosol and colocalizes with/accumulates in mitochondria where it confers multilevel mitochondrial protection: decreases mitochondrial superoxide production and cell peroxide levels, enhances mitochondrial membrane potential, improves mitochondrial coupling, and reduces mtDNA damage, altogether suggesting improvement of the overall mitochondrial function [174]. In accordance, increased endogenous formation of ROS after continuous cultivation of endothelial cells was accompanied by both mitochondrial DNA damage and an export of nuclear TERT protein from the nucleus into the cytoplasm, followed by the onset of replicative senescence. Likewise, antioxidants delayed the onset of replicative senescence by counteracting the increased ROS production and preventing nuclear export of TERT protein [175]. Moreover, TERT overexpression suppressed retrograde response [170], which represents a characteristic feature of replicative senescence [29]. Of note, these finding are in discrepancy with earlier reports according to which ectopically expressed TERT in human fibroblasts under acute oxidative stress resulted in increased mtDNA damage [176,177,178].

Beyond ROS accumulation, mitochondrial dysfunction results in a decline in iron-sulfur cluster biogenesis which can stimulate nuclear genomic instability, which is manifested as a gradual slow of growth rate, a high frequency of cell death, or, surprisingly, cell-cycle arrest in the G1 phase and at a metabolically active status, reminiscing of senescence [179]. This cellular crisis would be expected to drive further decline in mitochondrial function via genotoxic activation of p53 and associated repression of PGC-1 family coactivators. Iron sulfur (Fe/S) clusters serve catalytic and structural functions in many cellular proteins, thus being involved in a wide variety of cellular processes such as enzymatic reactions, respiration, cofactor biosynthesis, ribosome biogenesis, regulation of gene expression, and DNA-RNA metabolism [180]. Noteworthy, in fibroblasts expressing oncogenic Ras, knocking down Rieske iron sulfur protein (RISP) of complex III leads to ROS production, a decrease in ATP synthesis, and activation of the AMPK pathway which triggers a robust senescent phenotype [162].

Another aspect of the involvement of mitochondrial genome instability in cellular senescence is its effect on the stem cell’s pool integrity. In mtDNA mutator mice, age-dependent accumulation of somatic mtDNA mutations has been suggested to affect stem cell homeostasis and eventually accelerates stem cell senescence. Potential mechanisms whereby mtDNA mutagenesis drives senescence in a stem cell population include loss of the mitochondrial membrane potential (MMP), blockage of metabolic shift during differentiation (from glycolysis to OXPHOS), imbalanced fusion and fission events (towards fission), abnormal mitophagy and/or autophagy, as well as ROS production [181].

3.2. Impaired Mitochondrial Dynamics and Cellular Senescence

The potential involvement of deregulated mitochondrial fusion, fission and mitophagy in cellular senescence has been suggested by a number of studies. Generally, in senescent cells, mitochondrial dynamics are considered to be strongly reduced [182]. Highly elongated mitochondria, accompanied with enhanced cristae structure and increased mitochondrial content, have been described during stress-induced premature senescence [23]. In line with this notion, the ultrastructural study of senescent cells of p21-inducible precancerous and cancerous cellular models (Li-Fraumeni and Saos-2 cell lines, respectively) studied previously by our group [183,184], revealed defective enlarged mitochondria in the majority of cells with perturbed morphology of cristae. Specifically, they were distributed mostly at the periphery of mitochondria or shaping circular formations, while in other mitochondria they were partially or totally lost (Figure 2). The above observations indicate dynamic remodeling of cristae responding to the metabolically needs of senescent cells or reflecting respiratory chain deficiency [185].

Cells 08 00686 g002 550 Figure 2. Senescent cell with enlarged mitochondria with disturbed morphology of cristae distributed mostly at their periphery, forming circular constructions, or partially lost. N: nucleus. Scale bar: 1 μm.

Moreover, some of the mitochondria were elongated (Figure 3) or branched (Figure 4) with abnormal distribution or partial loss of cristae indicating disturbance of mitochondrial dynamics.

Cells 08 00686 g003 550 Figure 3. Elongated mitochondria in the cytoplasm of a senescent cell with partial loss of cristae. N: nucleus. Scale bar: 500 nm.

Cells 08 00686 g004 550 Figure 4. Branched mitochondrion in the cytoplasm of a senescent cell with partial loss of cristae. Scale bar: 500 nm.

As previously shown by Lee and colleagues [186], mitochondrial elongation has been associated with down-regulation of Fis1 along with an overall enhancement of fusion activity, as manifested by increased expression ratio(s) of Mfn proteins to fission modulators (Mfn > Drp1 and/or Mfn > Fis1). Direct induction of mitochondrial elongation by blocking the mitochondrial fission process was sufficient to develop a senescent phenotype with increased ROS production, whereas overexpression of Fis1 protein blocked the mitochondrial elongation and partially reversed the senescent phenotype. Remarkably, in case of simultaneous depletion of Fis1 and OPA1 (the critical component of mitochondrial fusion) or sequential depletion of OPA1 followed by Fis1 shRNA transfection, senescent-associated changes were significantly suppressed, and the cell proliferation rate was restored, even though mitochondria remained severely fragmented. This indicates that it is the fusion/fission imbalance that causes sustained mitochondrial elongation and not just the inhibition of mitochondrial fission per se, that triggers senescence-associated changes in Fis1 knockdown cells [186].

The formation of long and interconnected mitochondria in human endothelial cells (HUVECs) cultivated in vitro till they reached replicative senescence was associated with a reduced expression of Drp1 and Fis1 correlated with increased PINK1 mRNA levels [187]. The same mitochondrial architectural configuration is also adopted due to MARCH5 depletion that binds hFis1, Drp1 and Mfn2 [130,131,188]. The loss of MARCH5 facilitates mitochondrial elongation and interconnection either by suppression of Drp1-mediated mitochondrial or a marked increase in the steady-state levels of Mfn1, thus imposing a cellular stress which ultimately triggers cellular senescence [189]. Disruption of mitochondrial dynamics has been implicated in the induction of cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial fragmentation induced by knockdown of fusion proteins, OPA1 or MFN, was shown to boost mitochondrial ROS production and accelerate cellular senescence in HBEC exposed to cigarette smoke extract [190].

Taken together, in vitro studies show that senescent cells are typically associated with an overall shift toward more fusion events [31]. Whether mitochondrial elongation is causal to or epiphenomenon of cellular senescence has not yet been fully elucidated. Mitochondrial elongation could represent an energy-save attitude or even an adaptation to the impaired mitochondrial biogenesis that characterizes cellular senescence [145,187]. Others suggest that mitochondrial lengthening renders cells more resistant against apoptotic stimuli or autophagic degradation, thus facilitating cell viability [191,192,193,194,195,196]. Of interest, elongated and interconnected mitochondria of senescent endothelial cells exhibit a much higher threshold for stress-induced mitochondrial damage [187]. However, contradictory findings support that, in a longitudinal basis, prolonged elongated mitochondria ultimately result in higher production of intracellular ROS and diminished mitochondrial respiration activity [23].

Time-course analysis showed that mitochondrial population turnover is gradually declined in senescent cells in vitro and in vivo [197,198], as a consequence of reduced basal or induced autophagic activity, or due to lysosomal dysfunction and overload, which eventually overcome mitophagy capability [199]. This may partly explain the increased mitochondrial content of senescent cells [11,37].

It has been demonstrated that defective mitophagy and perinuclear build-up of damaged mitochondria is a critical contributor to the induction of cellular senescence in cigarette smoke extract-treated lung fibroblasts and small airway epithelial cells (SAECs). This is associated with impaired Parkin translocation and an exacerbation of mitochondrial ROS-induced DNA damage foci formation, due to cytoplasmic p53 accumulation [200]. Strikingly, in vitro experiments showed that Parkin overexpression was sufficient to induce mitophagy and repress accelerated cellular senescence in HBEC in response to cigarette smoke exposure, even in the setting of reduced PINK1 protein levels. Conversely PINK1 overexpression failed to recover impaired mitophagy caused by PRKN knockdown, suggesting that PRKN protein levels can be the rate-limiting factor in PINK1-PRKN-mediated mitophagy [201].

From the opposite point of view, cellular senescence directly contributes to dysregulated mitophagy that drives Senescence-Associated Mitochondrial Dysfunction (SAMD) [199]. Of great interest, SAMD is considered to be a major regulator of the senescent phenotype, especially of the SASP, thus contributing to the development and stability of the senescent cell cycle arrest [11,38,202].

Furthermore, the regulation and functional role of mitophagy in cellular senescence appears also to be related to changes in general autophagy, even though things are less clear. By removing damaged macromolecules or organelles, autophagy prevents garbage catastrophe, thus exerting an anti-senescence role. However, on a short-term basis, autophagy facilitates the synthesis of senescence-associated secretory proteins, thus suggesting to be a pro-senescence mechanism [203]. It was demonstrated that autophagy impairment with lysosomal and mitochondrial dysfunction is crucial for oxidative stress-induced cell senescence [27]. On the contrary, targeted mitochondrial damage due to oxidative stress-upregulated autophagy factors LC3B, ATG5 and ATG12, enhanced mitophagy and prevented senescence [204].

4. Future Perspectives

Intriguingly, the onset of the senescent phenotype is not always beneficial. Short-term accumulation of senescent cells has a positive outcome in embryonic development, tissue repair, and cancer prevention. On the other hand, its chronic persistence (chronic senescence) leads to detrimental results, such as aging and age-related pathologies [205]. Respectively, impaired mitochondrial function as well as cellular senescence are both implicated in aging and age-related pathologies such as cancer, neurodegenerative and cardiovascular diseases [206,207]. Except for the mitochondrial free radical theory of aging which highlights the accumulation of mitochondrial oxidative damage (due to progressive mitochondrial dysfunction and increased production of ROS) as the driving force of age-related phenotypes, the current view supports the notion that aging is, among other causes, the result of generalized impaired mitochondrial bioenergetics that cause global cellular damage [119,208]. In addition, cellular senescence has also been recognized as a hallmark of aging; although in young organisms, cellular senescence acts as a failsafe program to prevent the propagation of damaged cells, the deficient clearance of senescent cells in aged tissues results in accumulation of senescent cells which exert deleterious effects and jeopardize tissue homeostasis [208].

This also has therapeutic perspectives. Elimination of senescent cells in a selective manner over normal cells has been proven to prevent or delay tissue dysfunction and to maximize healthy lifespan as exemplified in progeroid animal models [97]. Moreover, a new research field has opened up, where strategies can be designed to reduce the burden of senescent cells in an organism and thus contribute to the treatment of pathological conditions and age-related abnormal conditions. Given that mitochondrial dysfunction—at least partly—drives senescence, targeting mitochondrial dysfunction emerges as a potential therapeutic strategy to counteract the negative impact of chronic senescence. In this regard, resveratrol, a polyphenol which has been shown to exert immunomodulatory, anti-inflammatory and antioxidative effects, with an ability to prolong lifespan and protect against age-related disorders in different animal models, has gained attention as a potential senolytic agent [209]. It has been demonstrated that resveratrol improves mitochondrial function and protects against metabolic disease by inducing PGC-1a and SIRT1 activity [210]. Moreover, it was recently reported the role for mitochondria in specific elimination of senescent cells using mitochondria-targeted tamoxifen (MitoTam), based on the capacity of non-proliferating non-cancerous cells to withstand oxidative insult induced by OXPHOS inhibition [211].

SASP action is considered to be the major modulating factor of the bimodal behavior that senescent cells exert. Therefore, mitochondrial-targeted interventions for selective inhibition of the SASP components can elicit anti-senescent effects. As previously mentioned, senescent cells exhibit impaired mitochondrial biogenesis and metabolic shifts, namely a decrease in NAD+ and an increase in AMP and ADP. These changes have been shown to contribute to both the senescent cell cycle arrest as well as the regulation of the SASP via multiple signaling pathways. The core idea is that mitochondrial ablation upon induction of senescence, selectively inhibits common pro-inflammatory and pro-oxidant aspects of the senescent phenotype, while preserving the cell cycle arrest, which in specific context (e.g., late stage of tumorigenesis) is desirable. In this regard, possible mechanisms whereby mitochondria that have abolished normal function are implicated in SASP regulation include: (a) mTOR activation due to sustained DDR which promotes PGC1-β dependent biogenesis of new, yet dysfunctional, mitochondria that further increase ROS production, thus replenishing DDR through a positive feedback-loop, (b) AMPK activation (due to increased AMP/ATP and ADP/ATP ratios) which in turn activates p53 and subsequently stabilizes p16 and p21, thus promoting cell cycle arrest, (c) low NAD+-driven inhibition of poly-ADP ribose polymerases (PARPs) which are dispensable for DNA repair after genotoxic stress, (d) low NAD+-driven inactivation of sirtuins, which normally serve as inhibitors of NF-kB activity and transcriptional repressor of SASP genes, (e) initiation of an innate immune response due to cytosolic exit of damaged mtDNA molecules that exert pro-inflammatory effects [18]. Moreover, recent studies indicate that mTOR inhibition contributes to reduction of the SASP by decreasing translation of the proteins interleukin-1 α (IL-1A) and MAP kinase-activated protein kinase 2 (MAPKAPK2) or via reduction of mitochondrial biogenesis and ROS-dependent persistence of a DDR [37,212,213].

In addition, activation of autophagy by inhibition of mTORC was shown to efficiently suppress senescence phenotypes in a number of studies [27,37,202]. Of great importance, the introduction of senolytic strategies is a relative novel and unexplored field. A high level of caution is needed since new findings are coming into light underscoring possible undesirable side effects. For example, a category of senolytic drugs that function as inhibitors of the anti-apoptotic BCL-2 family proteins has been shown to induce a minor mitochondrial outer membrane permeabilization (miMOMP) due to limited caspase activation, not sufficient to induce apoptosis, yet capable of causing increased DNA damage and genomic instability, even in neighboring non-senescent cells [18,214]. Of clinical relevance, a recently developed chemically modified mitochondria-targeted doxorubicin derivative was shown to be less cardiotoxic and more effective than doxorubicin, against drug-resistant tumor cells overexpressing P-glycoprotein [215]. Even though the role of mitochondria in the various modes of cell death and cell physiology has been well known, their involvement in cellular senescence has only recently started to be elucidated. At the moment, a thorough understanding of the mechanisms governing the bidirectional connection between perturbations in mitochondrial homeostasis and cellular senescence is missing. Novel methodologies for the detection of cellular senescence and new technologies applied to the analysis of mitochondrial biochemistry continue to be developed, thus facilitating our understanding of these multifaceted organelles and elucidating the interplay between mitochondria and cellular senescence [216,217].

Author Contributions

Conceptualization, V.G.G., S.H, P.V.S.V and K.E.; Resources, P.V.S.V., M.K. and S.H.; Writing-Original Draft preparation, P.V.S.V., K.V., G.F., M.I.P., P.G.P., E.C., and M.K.; Writing-Review and Editing, S.H. and K.E.; Supervision, V.G.; Project Administration, V.G.; Funding Acquisition, V.G.

Funding

Financial support was from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grants agreement No. 722729 (SYNTRAIN); the Welfare Foundation for Social & Cultural Sciences (KIKPE), Greece; Pentagon Biotechnology Ltd., UK; DeepMed IO Ltd., UK and NKUA-SARG grants No 70/3/9816, 70/3/12128.

Conflicts of Interest

The authors declare no conflict of interest.

References

Gorgoulis, V.G.; Pefani, D.E.; Pateras, I.S.; Trougakos, I.P. Integrating the DNA damage and protein stress responses during cancer development and treatment. J. Pathol. 2018, 246, 12–40. [Google Scholar] [CrossRef]

Hayflick, L.; Moorhead, P.S. The serial cultivation of human diploid cell strains. Exp. Cell Res. 1961, 25, 585–621. [Google Scholar] [CrossRef]

Halazonetis, T.D.; Gorgoulis, V.G.; Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 2008, 319, 1352–1355. [Google Scholar] [CrossRef] [PubMed]

Gorgoulis, V.G.; Halazonetis, T.D. Oncogene-induced senescence: The bright and dark side of the response. Curr. Opin. Cell Biol. 2010, 22, 816–827. [Google Scholar] [CrossRef]

Muñoz-Espín, D.; Serrano, M. Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 2014, 15, 482–496. [Google Scholar] [CrossRef] [PubMed]

Burton, D.G.; Krizhanovsky, V. Physiological and pathological consequences of cellular senescence. Cell. Mol. Life Sci. 2014, 71, 4373–4386. [Google Scholar] [CrossRef] [PubMed]

Georgakopoulou, E.; Evangelou, K.; Havaki, S.; Townsend, P.; Kanavaros, P.; Gorgoulis, V.G. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech. Ageing Dev. 2016, 156, 17–24. [Google Scholar] [CrossRef] [PubMed]

Liakou, E.; Mavrogonatou, E.; Pratsinis, H.; Rizou, S.; Evangelou, K.; Panagiotou, P.N.; Karamanos, N.K.; Gorgoulis, V.G.; Kletsas, D. Ionizing radiation-mediated premature senescence and paracrine interactions with cancer cells enhance the expression of syndecan 1 in human breast stromal fibroblasts: The role of TGF-β. Aging 2016, 8, 1650–1669. [Google Scholar] [CrossRef]

Salama, R.; Sadaie, M.; Hoare, M.; Narita, M. Cellular senescence and its effector programs. Genes 2014, 28, 99–114. [Google Scholar] [CrossRef]

Serrano, M.; Lin, A.W.; McCurrach, M.E.; Beach, D.; Lowe, S.W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997, 88, 593–602. [Google Scholar] [CrossRef]

Passos, J.F.; Nelson, G.; Wang, C.; Richter, T.; Simillion, C.; Proctor, C.J.; Miwa, S.; Olijslagers, S.; Hallinan, J.; Wipat, A.; et al. Feedback between p21 and reactive oxygen production is necessary for cell senescence. Mol. Syst. Biol. 2010, 6, 347. [Google Scholar] [CrossRef] [PubMed]

Takahashi, A.; Ohtani, N.; Yamakoshi, K.; Iida, S.; Tahara, H.; Nakayama, K.; Nakayama, K.I.; Ide, T.; Saya, H.; Hara, E. Mitogenic signalling and the p16INK4a-Rb pathway cooperate to enforce irreversible cellular senescence. Nat. Cell Biol. 2006, 8, 1291–1297. [Google Scholar] [CrossRef] [PubMed]

Childs, B.G.; Baker, D.J.; Kirkland, J.L.; Campisi, J.; van Deursen, J.M. Senescence and apoptosis: Dueling or complementary cell fates? EMBO Rep. 2014, 15, 1139–1153. [Google Scholar] [CrossRef] [PubMed]

Kuilman, T.; Michaloglou, C.; Mooi, W.J.; Peeper, D.S. The essence of senescence. Genes Dev. 2010, 24, 2463–2479. [Google Scholar] [CrossRef] [PubMed]

Campisi, J.; d’Adda di Fagagna, F. Cellular senescence: When bad things happen to good cells. Nat. Rev. Mol. Cell Biol. 2007, 8, 729–740. [Google Scholar] [CrossRef] [PubMed]

Rodier, F.; Campisi, J.J. Four faces of cellular senescence. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef] [PubMed]

Kwon, S.M.; Hong, S.M.; Lee, Y.K.; Min, S.; Yoon, G. Metabolic features and regulation in cell senescence. BMB Rep. 2019, 52, 5–12. [Google Scholar] [CrossRef] [PubMed]

Birch, J.; Passos, J.F. Targeting the SASP to combat ageing: Mitochondria as possible intracellular allies? Bioessays 2017, 39. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Passos, J.F. Mitochondria: Are they causal players in cellular senescence? Biochim. Biophys. Acta 2015, 1847, 1373–1379. [Google Scholar] [CrossRef]

Yoon, G.; Kim, H.J.; Yoon, Y.S.; Cho, H.; Lim, I.K.; Lee, J.H. Iron chelation-induced senescence-like growth arrest in hepatocyte cell lines: Association of transforming growth factor beta1 (TGF-beta1)-mediated p27Kip1 expression. Biochem. J. 2002, 366, 613–621. [Google Scholar] [CrossRef]

Yoon, Y.S.; Byun, H.O.; Cho, H.; Kim, B.K.; Yoon, G. Complex II defect via down-regulation of iron-sulfur subunit induces mitochondrial dysfunction and cell cycle delay in iron chelation-induced senescence-associated growth arrest. J. Biol. Chem. 2003, 278, 51577–51586. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Kim, M.J.; Yoon, G. PKCdelta phosphorylation is an upstream event of GSK3 inactivation-mediated ROS generation in TGF-beta1-induced senescence. Free Radic. Res. 2014, 48, 1100–1108. [Google Scholar] [CrossRef] [PubMed]

Yoon, Y.S.; Yoon, D.S.; Lim, I.K.; Yoon, S.H.; Chung, H.Y.; Rojo, M.; Malka, F.; Jou, M.J.; Martinou, J.C.; Yoon, G. Formation of elongated giant mitochondria in DFO-induced cellular senescence: Involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 2006, 209, 468–480. [Google Scholar] [CrossRef] [PubMed]

Byun, H.O.; Jung, H.J.; Seo, Y.H. GSK3 inactivation is involved in mitochondrial complex IV defect in transforming growth factor (TGF) beta1-induced senescence. Exp. Cell Res. 2012, 318, 1808–1819. [Google Scholar] [CrossRef] [PubMed]

Lafargue, A.; Degorre, C.; Corre, I. Ionizing radiation induces long-term senescence in endothelial cells through mitochondrial respiratory complex II dysfunction and superoxide generation. Free Radic. Biol. Med. 2017, 108, 750–759. [Google Scholar] [CrossRef] [PubMed]

Victorelli, S.; Passos, J.F. Reactive Oxygen Species Detection in Senescent Cells. Methods Mol. Biol. 2019, 1896, 21–29. [Google Scholar] [CrossRef] [PubMed]

Tai, H.; Wang, Z.; Gong, H.; Han, X.; Zhou, J.; Wang, X.; Wei, X.; Ding, Y.; Huang, N.; Qin, J.; et al. Autophagy impairment with lysosomal and mitochondrial dysfunction is an important characteristic of oxidative stress-induced senescence. Autophagy 2017, 13, 99–113. [Google Scholar] [CrossRef] [PubMed]

Habiballa, L.; Salmonowicz, H.; Passos, J.F. Senescence Mitochondria and cellular senescence: Implications for musculoskeletal ageing. Free Radic. Biol. Med. 2019, 132, 3–10. [Google Scholar] [CrossRef]

Passos, J.F.; Saretzki, G.; Ahmed, S.; Nelson, G.; Richter, T.; Peters, H.; Wappler, I.; Birket, M.J.; Harold, G.; Schaeuble, K.; et al. Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biol. 2007, 5, e110. [Google Scholar] [CrossRef]

Studencka, M.; Schaber, J. Senoptosis: Non-lethal DNA cleavage as a route to deep senescence. Oncotarget 2017, 8, 30656–30671. [Google Scholar] [CrossRef]

Ziegler, D.V.; Wiley, C.D.; Velarde, M.C. Mitochondrial effectors of cellular senescence: Beyond the free radical theory of aging. Aging Cell 2015, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]

Lee, A.C.; Fenster, B.E.; Ito, H.; Takeda, K.; Bae, N.S.; Hirai, T.; Yu, Z.X.; Ferrans, V.J.; Howard, B.H.; Finkel, T. Ras proteins induce senescence by altering the intracellular levels of reactive oxygen species. J. Biol. Chem. 1999, 274, 7936–7940. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Berggren, P.; Yu, J.; Lee, S.W.; Aaronson, S.A. Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol. Cell. Biol. 2003, 23, 8576–8585. [Google Scholar] [CrossRef] [PubMed]

Macip, S.; Igarashi, M.; Fang, L.; Chen, A.; Pan, Z.Q.; Lee, S.W.; Aaronson, S.A. Inhibition of p21-mediated ROS accumulation can rescue p21-induced senescence. EMBO J. 2002, 21, 2180–2188. [Google Scholar] [CrossRef] [PubMed]

Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]

Chen, H.; Ruiz, P.D.; McKimpson, W.M.; Novikov, L.; Kitsis, R.N.; Gamble, M.J. MacroH2A1 and ATM Play Opposing Roles in Paracrine Senescence and the Senescence-Associated Secretory Phenotype. Mol. Cell 2015, 59, 719–731. [Google Scholar] [CrossRef] [PubMed]

Correia-Melo, C.; Marques, F.D.; Anderson, R.; Hewitt, G.; Hewitt, R.; Cole, J.; Carroll, B.M.; Miwa, S.; Birch, J.; Merz, A.; et al. Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J. 2016, 724, 42. [Google Scholar] [CrossRef] [PubMed]

Wiley, C.D.; Velarde, M.C.; Lecot, P.; Liu, S.; Sarnoski, E.A.; Freund, A.; Shirakawa, K.; Lim, H.W.; Davis, S.S.; Ramanathan, A.; et al. Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab. 2016, 23, 303–314. [Google Scholar] [CrossRef] [PubMed]

Garesse, R.; Vallejo, C.G. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001, 263, 1–16. [Google Scholar] [CrossRef]

Anderson, S.; Bankier, A.T.; Barrell, B.G.; de Bruijn, M.H.; Coulson, A.R.; Drouin, J.; Eperon, I.C.; Nierlich, D.P.; Roe, B.A.; Sanger, F.; et al. Sequence and organization of the human mitochondrial genome. Nature 1981, 290, 457–465. [Google Scholar] [CrossRef]

Alexeyev, M.; Shokolenko, I.; Wilson, G.; Ledoux, S. The maintenance of mitochondrial DNA integrity-Critical analysis and update. Cold Spring Harb. Perspect. Biol. 2013, 5, a012641. [Google Scholar] [CrossRef] [PubMed]

Bogenhagen, D.; Clayton, D.A. The number of mitochondrial deoxyribonucleic acid genomes in mouse L and human HeLa cells. Quantitative isolation of mitochondrial deoxyribonucleic acid. J. Biol. Chem. 1974, 249, 7991–7995. [Google Scholar] [PubMed]

Holt, I.J.; He, J.; Mao, C.-C.; Boyd-Kirkup, J.D.; Martinsson, P.; Sembongi, H.; Reyes, A.; Spelbrink, J.N. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007, 7, 311–321. [Google Scholar] [CrossRef] [PubMed]

Clayton, D.A. Replication of animal mitochondrial DNA. Cell 1982, 28, 693–705. [Google Scholar] [CrossRef]

Holt, I.J.; Lorimer, H.E.; Jacobs, H.T. Coupled leading- and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000, 100, 515–524. [Google Scholar] [CrossRef]

Barrell, B.G.; Bankier, A.T.; Drouin, J. A different genetic code in human mitochondria. Nature 1979, 282, 189–194. [Google Scholar] [CrossRef] [PubMed]

Watanabe, K. Unique features of animal mitochondrial translation systems: The non-universal genetic code, unusual features of the translational apparatus and their relevance to human mitochondrial diseases. Proc. Jpn. Acad. B 2010, 86, 11–39. [Google Scholar] [CrossRef]

Kasamatsu, H.; Robberson, D.L.; Vinograd, J. A novel closed-circular mitochondrial DNA with properties of a replicating intermediate. Proc. Natl. Acad. Sci. USA 1971, 68, 2252–2257. [Google Scholar] [CrossRef]

Arnberg, A.; van Bruggen, E.F.; Borst, P. The presence of DNA molecules with a displacement loop in standard mitochondrial DNA preparations. Biochim. Biophys. Acta 1971, 246, 353–357. [Google Scholar] [CrossRef]

Di Re, M.; Sembongi, H.; He, J.; Reyes, A.; Yasukawa, T.; Martinsson, P.; Bailey, L.J.; Goffart, S.; Boyd-Kirkup, J.D.; Wong, T.S.; et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res. 2009, 37, 5701–5713. [Google Scholar] [CrossRef]

He, J.; Mao, C.C.; Reyes, A.; Sembongi, H.; Di Re, M.; Granycome, C.; Clippingdale, A.B.; Fearnley, I.M.; Harbour, M.; Robinson, A.J.; et al. The AAA+ protein ATAD3 has displacement loop binding properties and is involved in mitochondrial nucleoid organization. J. Cell Biol. 2007, 176, 141–146. [Google Scholar] [CrossRef] [PubMed]

Antes, A.; Tappin, I.; Chung, S.; Lim, R.; Lu, B.; Parrott, A.M.; Hill, H.Z.; Suzuki, C.K.; Lee, C.G. Differential regulation of full-length genome and a single-stranded 7S DNA along the cell cycle in human mitochondria. Nucleic Acids Res. 2010, 38, 6466–6476. [Google Scholar] [CrossRef] [PubMed]

Annex, B.H.; Williams, R.S. Mitochondrial DNA structure and expression in specialized subtypes of mammalian striated muscle. Mol. Cell. Biol. 1990, 10, 5671–5678. [Google Scholar] [CrossRef] [PubMed]

Brown, W.M.; Shine, J.; Goodman, H.M. Human mitochondrial DNA: Analysis of 7S DNA from the origin of replication. Proc. Natl. Acad. Sci. USA 1978, 75, 735–739. [Google Scholar] [CrossRef] [PubMed]

Akman, G.; Desai, R.; Bailey, L.J.; Yasukawa, T.; Dalla Rosa, I.; Durigon, R.; Holmes, J.B.; Moss, C.F.; Mennuni, M.; Houlden, H.; et al. Pathological ribonuclease H1 causes R-loop depletion and aberrant DNA segregation in mitochondria. Proc. Natl. Acad. Sci. USA 2016, 113, E4276–E4285. [Google Scholar] [CrossRef]

Andersson, S.G.; Karlberg, O.; Canback, B.; Kurland, C.G. On the origin of mitochondria: A genomics perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2003, 358, 165–177. [Google Scholar] [CrossRef] [PubMed]

Taanman, J.W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta 1999, 1410, 103–123. [Google Scholar] [CrossRef]

Gerhold, J.M.; Cansiz-Arda, ?.; Lõhmus, M.; Engberg, O.; Reyes, A.; van Rennes, H.; Sanz, A.; Holt, I.J.; Cooper, H.M.; Spelbrink, J.N. Human mitochondrial DNA-protein complexes attach to a cholesterol-rich membrane structure. Sci. Rep. 2015, 5, 15292. [Google Scholar] [CrossRef]

Kasashima, K.; Endo, H. Interaction of human mitochondrial transcription factor A in mitochondria: Its involvement in the dynamics of mitochondrial DNA nucleoids. Genes Cells 2015, 20, 1017–1027. [Google Scholar] [CrossRef]

Kelly, D.P.; Scarpulla, R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004, 18, 357–368. [Google Scholar] [CrossRef]

Ryan, M.T.; Hoogenraad, N.J. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 2007, 76, 701–722. [Google Scholar] [CrossRef]

Ventura-Clapier, R.; Garnier, A.; Veksler, V. Transcriptional control of mitochondrial biogenesis: The central role of PGC-1α. Cardiovasc. Res. 2008, 79, 208–217. [Google Scholar] [CrossRef] [PubMed]

van de Ven, R.A.H.; Santos, D.; Haigis, M.C. Mitochondrial Sirtuins and Molecular Mechanisms of Aging. Trends Mol. Med. 2017, 23, 320–331. [Google Scholar] [CrossRef] [PubMed]

Longley, M.J.; Nguyen, D.; Kunkel, T.A.; Copeland, W.C. The fidelity of human DNA polymerase γ with and without exonucleolytic proofreading and the p55 accessory subunit. J. Biol. Chem. 2001, 276, 38555–38562. [Google Scholar] [CrossRef] [PubMed]

Krasich, R.; Copeland, W.C. DNA polymerases in the mitochondria: A critical review of the evidence. Front. Biosci. (Landmark Ed.) 2017, 22, 692–709. [Google Scholar] [PubMed]

Sykora, P.; Kanno, S.; Akbari, M.; Kulikowicz, T.; Baptiste, B.A.; Leandro, G.S.; Lu, H.; Tian, J.; May, A.; Becker, K.A.; et al. DNA polymerase beta participates in mitochondrial DNA repair. Mol. Cell. Biol. 2017. [Google Scholar] [CrossRef]

Bailey, L.J.; Doherty, A.J. Mitochondrial DNA replication: A PrimPol perspective. Biochem. Soc. Trans. 2017, 45, 513–529. [Google Scholar] [CrossRef]

Kobayashi, K.; Guilliam, T.A.; Tsuda, M.; Yamamoto, J.; Bailey, L.J.; Iwai, S.; Takeda, S.; Doherty, A.J.; Hirota, K. Repriming by PrimPol is critical for DNA replication restart downstream of lesions and chain-terminating nucleosides. Cell Cycle 2016, 15, 1997–2008. [Google Scholar] [CrossRef]

Vasileiou, P.V.S.; Mourouzis, I.; Pantos, C. Principal Aspects Regarding the Maintenance of Mammalian Mitochondrial Genome Integrity. Int. J. Mol. Sci. 2017, 18, 1821. [Google Scholar] [CrossRef]

Liu, P.; Demple, B. DNA repair in mammalian mitochondria: Much more than we thought? Environ. Mol. Mutagen. 2010, 51, 417–426. [Google Scholar] [CrossRef]

Myers, K.A.; Saffhill, R.; O’Connor, P.J. Repair of alkylated purines in the hepatic DNA of mitochondria and nuclei in the rat. Carcinogenesis 1988, 9, 285–292. [Google Scholar] [CrossRef] [PubMed]

Satoh, M.S.; Huh, N.; Rajewsky, M.F.; Kuroki, T. Enzymatic removal of O6-ethylguanine from mitochondrial DNA in rat tissues exposed to N-ethyl-N-nitrosourea in vivo. J. Biol. Chem. 1988, 263, 6854–6856. [Google Scholar] [PubMed]

Pinz, K.G.; Bogenhagen, D.F. The influence of the DNA polymerase accessory subunit on base excision repair by the catalytic subunit. DNA Repair 2006, 5, 121–128. [Google Scholar] [CrossRef] [PubMed]

Szczesny, B.; Tann, A.W.; Longley, M.J.; Copeland, W.C.; Mitra, S. Long patch base excision repair in mammalian mitochondrial genomes. J. Biol. Chem. 2008, 283, 26349–26356. [Google Scholar] [CrossRef] [PubMed]

Graziewicz, M.A.; Longley, M.J.; Copeland, W.C. DNA polymerase γ in mitochondrial DNA replication and repair. Chem. Rev. 2006, 106, 383–405. [Google Scholar] [CrossRef] [PubMed]

Lakshmipathy, U.; Campbell, C. Double strand break rejoining by mammalian mitochondrial extracts. Nucleic Acids Res. 1999, 27, 1198–1204. [Google Scholar] [CrossRef] [PubMed]

Thyagarajan, B.; Padua, R.A.; Campbell, C. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 1996, 271, 27536–27543. [Google Scholar] [CrossRef] [PubMed]

Coffey, G.; Lakshmipathy, U.; Campbell, C. Mammalian mitochondrial extracts possess DNA end-binding activity. Nucleic Acids Res. 1999, 27, 3348–3354. [Google Scholar] [CrossRef]

Tadi, K.S.; Sebastian, R.; Dahal, S.; Babu, R.K.; Choudhary, B.; Raghavan, S.C. Microhomology-mediated end joining is the principal mediator of double-strand break repair during mitochondrial DNA lesions. Mol. Biol. Cell 2016, 27, 223–235. [Google Scholar] [CrossRef]

Bacman, S.R.; Williams, S.L.; Moraes, C.T. Intra- and inter-molecular recombination of mitochondrial DNA after in vivo induction of multiple double-strand breaks. Nucleic Acids Res. 2009, 37, 4218–4226. [Google Scholar] [CrossRef]

Mason, P.A.; Matheson, E.C.; Hall, A.G.; Lightowlers, R.N. Mismatch repair activity in mammalian mitochondria. Nucleic Acids Res. 2003, 31, 1052–1058. [Google Scholar] [CrossRef] [PubMed]

de Souza-Pinto, N.C.; Mason, P.A.; Hashiguchi, K.; Weissman, L.; Tian, J.; Guay, D.; Lebel, M.; Stevnsner, T.V.; Rasmussen, L.J.; Bohr, V.A. Novel DNA mismatch-repair activity involving YB-1 in human mitochondria. DNA Repair 2009, 8, 704–719. [Google Scholar] [CrossRef] [PubMed]

Kamenisch, Y.; Fousteri, M.; Knoch, J.; von Thaler, A.K.; Fehrenbacher, B.; Kato, H.; Becker, T.; Dollé, M.E.; Kuiper, R.; Majora, M.; et al. Proteins of nucleotide and base excision repair pathways interact in mitochondria to protect from loss of subcutaneous fat, a hallmark of aging. J. Exp. Med. 2010, 207, 379–390. [Google Scholar] [CrossRef] [PubMed]

Sumpter, R., Jr.; Sirasanagandla, S.; Fernández, Á.F.; Wei, Y.; Dong, X.; Franco, L.; Zou, Z.; Marchal, C.; Lee, M.Y.; Clapp, D.W.; et al. Fanconi Anemia Proteins Function in Mitophagy and Immunity. Cell 2016, 65, 867–881. [Google Scholar] [CrossRef] [PubMed]

Schmidt, O.; Pfanner, N.; Meisinger, C. Mitochondrial protein import: From proteomics to functional mechanisms. Nat. Rev. Mol. Cell Biol. 2010, 11, 655–667. [Google Scholar] [CrossRef] [PubMed]

Pagliarini, D.J.; Calvo, S.E.; Chang, B.; Sheth, S.A.; Vafai, S.B.; Ong, S.E.; Walford, G.A.; Sugiana, C.; Boneh, A.; Chen, W.K.; et al. A mitochondrial protein compendium elucidates complex I disease biology. Cell 2008, 134, 112–123. [Google Scholar] [CrossRef] [PubMed]

Lopez, M.F.; Kristal, B.S.; Chernokalskaya, E.; Lazarev, A.; Shestopalov, A.I.; Bogdanova, A.; Robinson, M. High-throughput profiling of the mitochondrial proteome using affinity fractionation and automation. Electrophoresis. 2000, 21, 3427–3440. [Google Scholar] [CrossRef]

Nash, R.; Weng, S.; Hitz, B.; Balakrishnan, R.; Christie, K.R.; Costanzo, M.C.; Dwight, S.S.; Engel, S.R.; Fisk, D.G.; Hirschman, J.E.; et al. Expanded protein information at SGD:new pages and proteome browser. Nucleic Acids Res. 2007, 35, D468–D471. [Google Scholar] [CrossRef] [PubMed]

Rezaul, K.; Wu, L.; Mayya, V.; Hwang, S.I.; Han, D. A Systematic Characterization of Mitochondrial Proteome from Human T Leukemia Cell. Mol. Cell. Proteom. 2005, 4, 169–181. [Google Scholar] [CrossRef]

Chacinska, A.; Koehler, C.M.; Milenkovic, D.; Lithgow, T.; Pfanner, N. Importing mitochondrial proteins: Machineries and mechanisms. Cell 2009, 138, 628–644. [Google Scholar] [CrossRef]

Koehler, C.M.; Merchant, S.; Schatz, G. How membrane proteins travel across the mitochondrial intermembrane space. Trends Biochem. Sci. 1999, 24, 428–432. [Google Scholar] [CrossRef]

Fox, T.D. Mitochondrial protein synthesis, import, and assembly. Genetics 2012, 192, 1203–1234. [Google Scholar] [CrossRef] [PubMed]

Neupert, W.; Herrmann, J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007, 76, 723–749. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Trougakos, I.P. Cross Talk of Proteostasis and Mitostasis in Cellular Homeodynamics, Ageing, and Disease. Oxid. Med. Cell. Longev. 2016, 2016, 4587691. [Google Scholar] [CrossRef] [PubMed]

Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol. 2014, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]

Gumeni, S.; Evangelakou, Z.; Gorgoulis, V.G.; Trougakos, I.P. Proteome Stability as a Key Factor of Genome Integrity. Int. J. Mol. Sci. 2017, 18, 2036. [Google Scholar] [CrossRef] [PubMed]

Baker, B.M.; Haynes, C.M. Mitochondrial protein quality control during biogenesis and aging. Trends Biochem. Sci. 2011, 36, 254–261. [Google Scholar] [CrossRef] [PubMed]

Tatsuta, T. Protein quality control in mitochondria. J. Biochem. 2009, 146, 455–461. [Google Scholar] [CrossRef] [PubMed]

Matsushima, Y.; Kaguni, L.S. Matrix proteases in mitochondrial DNA function. Biochim. Biophys. Acta 2012, 1819, 1080–1087. [Google Scholar] [CrossRef]

Bukau, B.; Horwich, A.L. The Hsp70 and Hsp60 chaperone machines. Cell 1998, 92, 351–366. [Google Scholar] [CrossRef]

Hartl, F.U.; Hayer-Hartl, M. Molecular chaperones in the cytosol: From nascent chain to folded protein. Science 2002, 295, 1852–1858. [Google Scholar] [CrossRef] [PubMed]

Pfanner, N.; Geissler, A. Versatility of the mitochondrial protein import machinery. Nat. Rev. Mol. Cell Biol. 2001, 2, 339–349. [Google Scholar] [CrossRef] [PubMed]

Plesofsky Vig, N.; Brambl, R. Heat shock response of Neurospora crassa: Protein synthesis and induced thermotolerance. J. Bacteriol. 1985, 162, 1083–1091. [Google Scholar] [PubMed]

Schmitt, M.; Neupert, W.; Langer, T. The molecular chaperone Hsp78 confers compartment-specific thermotolerance to mitochondria. J. Cell Biol. 1996, 134, 1375–1386. [Google Scholar] [CrossRef] [PubMed]

Duchniewicz, M.; Germaniuk, A.; Westermann, B.; Neupert, W.; Schwarz, E.; Marszalek, J. Dual role of the mitochondrial chaperone Mdj1p in inheritance of mitochondrial DNA in yeast. Mol. Cell. Biol. 1999, 19, 8201–8210. [Google Scholar] [CrossRef] [PubMed]

Gambill, P.D.; Voos, W.; Kang, P.J.; Miao, B.; Langer, T.; Craig, E.A.; Pfanner, N. A dual role for mitochondrial heat shock protein 70 in membrane translocation of preproteins. J. Cell Biol. 1993, 123, 109–117. [Google Scholar] [CrossRef] [PubMed]

Cheng, M.Y.; Hartl, F.-U.; Martin, J.; Pollock, R.A.; Kalousek, F.; Neupert, W.; Hallberg, E.M.; Hallberg, R.L.; Horwich, A.L. Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 1989, 337, 620–625. [Google Scholar] [CrossRef] [PubMed]

Lewandowska, A.; Gierszewska, M.; Marszalek, J.; Liberek, K. Hsp78 chaperone functions in restoration of mitochondrial network following heat stress. Biochim. Biophys. Acta 2006, 1763, 141–151. [Google Scholar] [CrossRef]

Germaniuk, A.; Liberek, K.; Marszalek, J. A bichaperone (Hsp70–Hsp78) system restores mitochondrial DNA synthesis following thermal inactivation of Mip1p polymerase. J. Biol. Chem. 2002, 277, 27801–27808. [Google Scholar] [CrossRef]

Felts, S.J.; Owen, B.A.; Nguyen, P.; Trepel, J.; Donner, D.B.; Toft, D.O. The Hsp90-related protein TRAP1 is a mitochondrial protein with distinct functional properties. J. Biol. Chem. 2000, 275, 3305–3312. [Google Scholar] [CrossRef]

Cechetto, J.D.; Gupta, R.S. Immunoelectron microscopy provides evidence that tumor necrosis factor receptor-associated protein 1 (TRAP-1) is a mitochondrial protein which also localizes at specific extramitochondrial sites. Exp. Cell Res. 2000, 260, 30–39. [Google Scholar] [CrossRef] [PubMed]

Yoshida, S.; Tsutsumi, S.; Muhlebach, G.; Sourbier, C.; Lee, M.J.; Lee, S.; Vartholomaiou, E.; Tatokoro, M.; Beebe, K.; Miyajima, N.; et al. Molecular chaperone TRAP1 regulates a metabolic switch between mitochondrial respiration and aerobic glycolysis. Proc. Natl. Acad. Sci. USA 2013, 110, E1604–E1612. [Google Scholar] [CrossRef] [PubMed]

Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]

Montesano, G.N.; Chirico, G.; Pirozzi, G.; Costantino, E.; Landriscina, M.; Esposito, F. Tumor necrosis factor associated protein 1 (TRAP-1) protects cells from oxidative stress and apoptosis. Stress 2007, 10, 342–350. [Google Scholar]

Im, C.N.; Lee, J.S.; Zheng, Y.; Seo, J.S. Iron chelation study in a normal human hepatocyte cell line suggests that tumor necrosis factor receptor-associated protein 1 (TRAP1) regulates production of reactive oxygen species. J. Cell. Biochem. 2007, 100, 474–486. [Google Scholar] [CrossRef] [PubMed]

Guzzo, G.; Sciacovelli, M.; Bernardi, P.; Rasola, A. Inhibition of succinate dehydrogenase by the mitochondrial chaperone TRAP1 has anti-oxidant and anti-apoptotic effects on tumor cells. Oncotarget 2014, 5, 11897–11908. [Google Scholar] [CrossRef] [PubMed]

Quirós, P.M.; Langer, T.; López-Otín, C. New roles for mitochondrial proteases in health, ageing and disease. Nat. Rev. Mol. Cell Biol. 2015, 16, 345–359. [Google Scholar] [CrossRef] [PubMed]

Pickart, C.M.; Cohen, R.E. Proteasomes and their kin: Proteases in the machine age. Nat. Rev. Mol. Cell Biol. 2004, 5, 177–187. [Google Scholar] [CrossRef] [PubMed]

López-Otín, C.; Blasco, M.A.; Partridge, L.; Serrano, M.; Kroemer, G. The hallmarks of aging. Cell 2013, 153, 1194–1217. [Google Scholar] [CrossRef]

Anand, R.; Langer, T.; Baker, M.J. Proteolytic control of mitochondrial function and morphogenesis. Biochim. Biophys. Acta 2013, 1833, 195–204. [Google Scholar] [CrossRef]

Ieva, R.; Heißwolf, A.K.; Gebert, M.; Vögtle, F.N.; Wollweber, F.; Mehnert, C.S.; Oeljeklaus, S.; Warscheid, B.; Meisinger, C.; van der Laan, M.; et al. Mitochondrial inner membrane protease promotes assembly of presequence translocase by removing a carboxy-terminal targeting sequence. Nat. Commun. 2013, 4, 2853. [Google Scholar] [CrossRef] [PubMed]

Vögtle, F.N.; Prinz, C.; Kellermann, J.; Lottspeich, F.; Pfanner, N.; Meisinger, C. Mitochondrial protein turnover: Role of the precursor intermediate peptidase Oct1 in protein stabilization. Mol. Biol. Cell 2011, 22, 2135–2143. [Google Scholar] [CrossRef] [PubMed]

Anand, R.; Wai, T.; Baker, M.J.; Kladt, N.; Schauss, A.C.; Rugarli, E.; Langer, T. The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J. Cell Biol. 2014, 204, 919–929. [Google Scholar] [CrossRef] [PubMed]

Konig, T.; Troder, S.E.; Bakka, K.; Korwitz, A.; Richter-Dennerlein, R.; Lampe, P.A.; Patron, M.; Muhlmeister, M.; Guerrero-Castillo, S.; Brandt, U.; et al. The m-AAA Protease Associated with Neurodegeneration Limits MCU Activity in Mitochondria. Mol. Cell 2016, 64, 148–162. [Google Scholar] [CrossRef] [PubMed]

Hao, H.X.; Khalimonchuk, O.; Schraders, M.; Dephoure, N.; Bayley, J.P.; Kunst, H.; Devilee, P.; Cremers, C.W.; Schiffman, J.D.; Bentz, B.G.; et al. SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 2009, 325, 1139–1142. [Google Scholar] [CrossRef] [PubMed]

Gegg, M.E.; Cooper, J.M.; Chau, K.Y.; Rojo, M.; Schapira, A.H.; Taanman, J.W. Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/Parkin-dependent manner upon induction of mitophagy. Hum. Mol. Genet. 2010, 19, 4861–4870. [Google Scholar] [CrossRef] [PubMed]

Tanaka, A.; Cleland, M.M.; Xu, S.; Narendra, D.P.; Suen, D.F.; Karbowski, M.; Youle, R.J. Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol. 2010, 191, 1367–1380. [Google Scholar] [CrossRef]

Neutzner, A.; Benard, G.; Youle, R.J.; Karbowski, M. Role of the ubiquitin conjugation system in the maintenance of mitochondrial homeostasis. Ann. N. Y. Acad. Sci. 2008, 1147, 242–253. [Google Scholar] [CrossRef]

Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS ONE 2008, 3, e1487. [Google Scholar] [CrossRef]

Yonashiro, R.; Ishido, S.; Kyo, S.; Fukuda, T.; Goto, E.; Matsuki, Y.; Ohmura-Hoshino, M.; Sada, K.; Hotta, H.; Yamamura, H.; et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006, 25, 3618–3626. [Google Scholar] [CrossRef]

Nakamura, N.; Kimura, Y.; Tokuda, M.; Honda, S.; Hirose, S. MARCH-V is a novel mitofusin 2- and Drp1-binding protein able to change mitochondrial morphology. EMBO Rep. 2006, 7, 1019–1022. [Google Scholar] [CrossRef] [PubMed]

Escobar-Henriques, M.; Westermann, B.; Langer, T. Regulation of mitochondrial fusion by the F-box protein Mdm30 involves proteasome-independent turnover of Fzo1. J. Cell Biol. 2006, 173, 645–650. [Google Scholar] [CrossRef] [PubMed]

Wang, H.; Song, P.; Du, L.; Tian, W.; Yue, W.; Liu, M.; Li, D.; Wang, B.; Zhu, Y.; Cao, C.; et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: Implication of dysregulated mitochondrial dynamics in Parkinson disease. Biol. Chem. 2011, 286, 11649–11658. [Google Scholar] [CrossRef] [PubMed]

Wiedemann, N.; Stiller, S.B.; Pfanner, N. Activation and degradation of mitofusins: Two pathways regulate mitochondrial fusion by reversible ubiquitylation. Mol. Cell 2013, 49, 423–425. [Google Scholar] [CrossRef] [PubMed]

Solaki, M.; Ewald, J.C. Fueling the Cycle: CDKs in Carbon and Energy Metabolism. Front. Cell Dev. Biol. 2018, 6, 93. [Google Scholar] [CrossRef]

Salazar-Roa, M.; Malumbres, M. Fueling the Cell Division Cycle. Trends Cell Biol. 2017, 27, 69–81. [Google Scholar] [CrossRef] [PubMed]

Shiota, T.; Traven, A.; Lithgow, T. Mitochondrial biogenesis: Cell-cycle-dependent investment in making mitochondria. Curr. Biol. 2015, 25, 78–80. [Google Scholar] [CrossRef]

Margineantu, D.H.; Emerson, C.B.; Diaz, D.; Hockenbery, D.M. Hsp90 inhibition decreases mitochondrial protein turnover. PLoS ONE 2007, 2, e1066. [Google Scholar] [CrossRef]

Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem. 2008, 283, 12681–12685. [Google Scholar] [CrossRef]

Azzu, V.; Brand, M.D. Degradation of an intramitochondrial protein by the cytosolic proteasome. J. Cell Sci. 2010, 123, 578–585. [Google Scholar] [CrossRef]

Lin, Y.-F.; Cole, M.H. Metabolism and the UPRmt. Mol. Cell 2016, 61, 677–682. [Google Scholar] [CrossRef] [PubMed]

Zhao, Q.; Wang, J.; Levichkin, I.V.; Stasinopoulos, S.; Ryan, M.T.; Hoogenraad, N.J. A mitochondrial specific stress response in mammalian cells. EMBO J. 2002, 21, 4411–4419. [Google Scholar] [CrossRef] [PubMed]

Pernas, L.; Scorrano, L. Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function. Annu. Rev. Physiol. 2015, 78, 505–531. [Google Scholar] [CrossRef] [PubMed]

Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]

Schrepfer, E.; Scorrano, L. Mitofusins, from Mitochondria to Metabolism. Mol. Cell 2016, 61, 683–694. [Google Scholar] [CrossRef]

Mitra, K.; Wunder, C.; Roysam, B.; Lin, G.; Lippincott-Schwartz, J. A hyperfused mitochondrial state achieved at G1-S regulates cyclin E buildup and entry into S phase. Proc. Natl. Acad. Sci. USA 2009, 106, 11960–11965. [Google Scholar] [CrossRef] [PubMed]

Schieke, S.M.; McCoy, J.P., Jr.; Finkel, T. Coordination of mitochondrial bioenergetics with G1 phase cell cycle progression. Cell Cycle 2008, 7, 1782–1787. [Google Scholar] [CrossRef]

Taguchi, N.; Ishihara, N.; Jofuku, A.; Oka, T.; Mihara, K. Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 2007, 282, 11521–11529. [Google Scholar] [CrossRef]

Wai, T.; Langer, T. Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol. Metab. 2016, 27, 105–117. [Google Scholar] [CrossRef] [PubMed]

Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 2016, 212, 379–387. [Google Scholar] [CrossRef] [PubMed]

Eura, Y.; Ishihara, N.; Yokota, S.; Mihara, K. Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J. Biochem. 2003, 134, 333–344. [Google Scholar] [CrossRef] [PubMed]

Olichon, A.; Emorine, L.J.; Descoins, E.; Pelloquin, L.; Brichese, L.; Gas, N.; Guillou, E.; Delettre, C.; Valette, A.; Hamel, C.P.; et al. The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett. 2002, 523, 171–176. [Google Scholar] [CrossRef]

Patten, D.A.; Wong, J.; Khacho, M.; Soubannier, V.; Mailloux, R.J.; Pilon-Larose, K.; MacLaurin, J.G.; Park, D.S.; McBride, H.M.; Trinkle-Mulcahy, L.; et al. OPA1-dependent cristae modulation is essential for cellular adaptation to metabolic demand. EMBO J. 2014, 33, 2676–2691. [Google Scholar] [CrossRef] [PubMed]

Roy, M.; Reddy, P.H.; Iijima, M.; Sesaki, H. Mitochondrial division and fusion in metabolism. Curr. Opin. Cell Biol. 2015, 33, 111–118. [Google Scholar] [CrossRef] [PubMed]

Jin, S.M.; Youle, R.J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 2012, 125, 795–799. [Google Scholar] [CrossRef] [PubMed]

Pickrell, A.M.; Youle, R.J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 2015, 85, 257–273. [Google Scholar] [CrossRef] [PubMed]

Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers 2016, 2, 16080. [Google Scholar] [CrossRef]

White, F.A.; Bunn, C.L. Restriction enzyme analysis of mitochondrial DNA in aging human cells. Mech. Ageing Dev. 1985, 30, 153–168. [Google Scholar] [CrossRef]

Park, S.Y.; Choi, B.; Cheon, H.; Pak, Y.K.; Kulawiec, M.; Singh, K.K.; Lee, M.S. Cellular aging of mitochondrial DNA-depleted cells. Biochem. Biophys. Res. Commun. 2004, 325, 1399–1405. [Google Scholar] [CrossRef]

Lee, H.C.; Yin, P.H.; Chi, C.W.; Wei, Y.H. Increase in mitochondrial mass in human fibroblasts under oxidative stress and during replicative cell senescence. J. Biomed. Sci. 2002, 9, 517–526. [Google Scholar] [CrossRef]

Xu, D.; Finkel, T. A role for mitochondria as potential regulators of cellular life span. Biochem. Biophys. Res. Commun. 2002, 294, 245–248. [Google Scholar] [CrossRef]

Moiseeva, O.; Bourdeau, V.; Roux, A.; Deschênes-Simard, X.; Ferbeyre, G. Mitochondrial dysfunction contributes to oncogene-induced senescence. Mol. Cell. Biol. 2009, 29, 4495–4507. [Google Scholar] [CrossRef] [PubMed]

Sahin, E.; Colla, S.; Liesa, M.; Moslehi, J.; Müller, F.L.; Guo, M.; Cooper, M.; Kotton, D.; Fabian, A.J.; Walkey, C.; et al. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 2011, 470, 359–365. [Google Scholar] [CrossRef] [PubMed]

Lin, J.; Handschin, C.; Spiegelman, B.M. Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab. 2005, 1, 361–370. [Google Scholar] [CrossRef] [PubMed]

Kyrylenko, S.; Baniahmad, A. Sirtuin family: A link to metabolic signaling and senescence. Curr. Med. Chem. 2010, 17, 2921–2932. [Google Scholar] [CrossRef] [PubMed]

Zhang, B.; Cui, S.; Bai, X.; Zhuo, L.; Sun, X.; Hong, Q.; Fu, B.; Wang, J.; Chen, X.; Cai, G. SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age 2013, 35, 2237–2253. [Google Scholar] [CrossRef] [PubMed]

Castex, J.; Willmann, D.; Kanouni, T.; Arrigoni, L.; Li, Y.; Friedrich, M.; Schleicher, M.; Wöhrle, S.; Pearson, M.; Kraut, N.; et al. Inactivation of Lsd1 triggers senescence in trophoblast stem cells by induction of Sirt4. Cell Death Dis. 2017, 8, e2631. [Google Scholar] [CrossRef]

Lee, S.M.; Dho, S.H.; Ju, S.K.; Maeng, J.S.; Kim, J.Y.; Kwon, K.S. Cytosolic malate dehydrogenase regulates senescence in human fibroblasts. Biogerontology 2012, 13, 525–536. [Google Scholar] [CrossRef]

Kaplon, J.; Zheng, L.; Meissl, K.; Chaneton, B.; Selivanov, V.A.; Mackay, G.; van der Burg, S.H.; Verdegaal, E.M.; Cascante, M.; Shlomi, T.; et al. A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence. Nature 2013, 498, 109–112. [Google Scholar] [CrossRef]

Butow, R.A.; Avadhani, N.G. Mitochondrial signaling: The retrograde response. Mol. Cell 2004, 14, 1–15. [Google Scholar] [CrossRef]

Grazioli, S.; Pugin, J. Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Front. Immunol. 2018, 9, 832. [Google Scholar] [CrossRef] [PubMed]

Dela Cruz, C.S.; Kang, M.J. Mitochondrial dysfunction and damage associated molecular patterns (DAMPs) in chronic inflammatory diseases. Mitochondrion 2018, 41, 37–44. [Google Scholar] [CrossRef] [PubMed]

Glück, S.; Guey, B.; Gulen, M.F.; Wolter, K.; Kang, T.W.; Schmacke, N.A.; Bridgeman, A.; Rehwinkel, J.; Zender, L.; Ablasser, A. Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence. Nat. Cell Biol. 2017, 19, 1061–1070. [Google Scholar] [CrossRef]

Shaheda, A.; Passos, J.F.; Birket, M.J.; Beckmann, T.; Brings, S.; Peters, H.; Birch-Machin, M.A.; Zglinicki, T.V.; Saretzki, T. Telomerase does not counteract telomere shortening but protects mitochondrial function under oxidative stress. J. Cell Sci. 2008, 121, 1046–1053. [Google Scholar] [CrossRef]

Haendeler, J.; Hoffmann, J.; Diehl, J.F.; Vasa, M.; Spyridopoulos, I.; Zeiher, A.M.; Dimmeler, S. Antioxidants inhibit nuclear export of telomerase reverse transcriptase and delay replicative senescence of endothelial cells. Circ. Res. 2004, 94, 768–775. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Skorvaga, M.; Annab, L.A.; Van Houten, B. Mitochondrial hTERT exacerbates free-radical-mediated mtDNA damage. Aging Cell 2004, 3, 399–411. [Google Scholar] [CrossRef] [PubMed]

Santos, J.H.; Meyer, J.N.; Mandavilli, B.S.; Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 2006, 314, 183–199. [Google Scholar] [PubMed]

Santos, J.H.; Meyer, J.N.; Van Houten, B. Mitochondrial localization of telomerase as a determinant for hydrogen peroxide-induced mitochondrial DNA damage and apoptosis. Hum. Mol. Genet. 2006, 15, 1757–1768. [Google Scholar] [CrossRef]

Veatch, J.R.; McMurray, M.A.; Nelson, Z.W.; Gottschling, D.E. Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 2009, 137, 1247–1258. [Google Scholar] [CrossRef]

Lill, R.; Mühlenhoff, U. Maturation of iron-sulfur proteins in eukaryotes: Mechanisms, connected processes, and diseases. Annu. Rev. Biochem. 2008, 77, 669–700. [Google Scholar] [CrossRef]

Su, T.; Turnbull, D.M.; Greaves, L.C. Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes 2018, 9, 182. [Google Scholar] [CrossRef] [PubMed]

Jendrach, M.; Pohl, S.; Voth, M.; Kowald, A.; Hammerstein, P.; Bereiter-Hahn, J. Morpho-dynamic changes of mitochondria during aging of human endothelial cells. Mech. Aging Dev. 2005, 126, 813–821. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Vougas, K.; Walter, D.; Polyzos, A.; Maya-Mendoza, A.; Haagensen, E.J.; Kokkalis, A.; Roumelioti, F.M.; Gagos, S.; Tzetis, M.; et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat. Cell Biol. 2016, 18, 777–789. [Google Scholar] [CrossRef] [PubMed]

Galanos, P.; Pappas, G.; Polyzos, A.; Kotsinas, A.; Svolaki, I.; Giakoumakis, N.N.; Glytsou, C.; Pateras, I.S.; Swain, U.; Souliotis, V.L.; et al. Mutational signatures reveal the role of RAD52 in p53-independent p21-driven genomic instability. Genome Biol. 2018, 19, 37. [Google Scholar] [CrossRef] [PubMed]

Cogliati, S.; Enriquez, J.A.; Scorrano, L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem. Sci. 2016, 41, 261–273. [Google Scholar] [CrossRef]

Lee, S.; Jeong, S.Y.; Lim, W.C.; Kim, S.; Park, Y.Y.; Sun, X.; Youle, R.J.; Cho, H. Mitochondrial fission and fusion mediators, hFis1 and OPA1, modulate cellular senescence. J. Biol. Chem. 2007, 282, 22977–22983. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Klinkenberg, M.; Auburger, G.; Bereiter-Hahn, J.; Jendrach, M. Decreased expression of Drp1 and Fis1 mediates mitochondrial elongation in senescent cells and enhances resistance to oxidative stress through PINK1. J. Cell Sci. 2010, 123, 917–926. [Google Scholar] [CrossRef] [PubMed]

Karbowski, M.; Neutzner, A.; Youle, R.J. The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division. J. Cell Biol. 2007, 178, 71–84. [Google Scholar] [CrossRef]

Park, Y.Y.; Lee, S.; Karbowski, M.; Neutzner, A.; Youle, R.J.; Cho, H. Loss of MARCH5 mitochondrial E3 ubiquitin ligase induces cellular senescence through dynamin-related protein 1 and mitofusin 1. J. Cell Sci. 2010, 123, 619–626. [Google Scholar] [CrossRef]

Hara, H.; Araya, J.; Ito, S.; Kobayashi, K.; Takasaka, N.; Yoshii, Y.; Wakui, H.; Kojima, J.; Shimizu, K.; Numata, T.; et al. Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence. Am. J. Physiol. Lung Cell. Mol. Physiol. 2013, 305, L737–L746. [Google Scholar] [CrossRef]

Lee, Y.J.; Jeong, S.Y.; Karbowski, M.; Smith, C.L.; Youle, R.J. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol. Biol. Cell 2004, 15, 5001–5011. [Google Scholar] [CrossRef] [PubMed]

Sugioka, R.; Shimizu, S.; Tsujimoto, Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J. Biol. Chem. 2004, 279, 52726–52734. [Google Scholar] [CrossRef] [PubMed]

Beckenridge, D.G.; Stojanovic, M.; Marcellus, R.C.; Shore, G.C. Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J. Cell Biol. 2003, 160, 1115–1127. [Google Scholar] [CrossRef] [PubMed]

Frank, S.; Gaume, B.; Bergmann-Leitner, E.S.; Leitner, W.W.; Robert, E.G.; Catez, F.; Smith, C.L.; Youle, R.J. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev. Cell 2001, 1, 515–552. [Google Scholar] [CrossRef]

Karbowski, M.; Lee, Y.J.; Gaume, B.; Jeong, S.Y.; Frank, S.; Nechushtan, A.; Santel, A.; Fuller, M.; Smith, C.L.; Youle, R.J. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J. Cell Biol. 2002, 159, 931–938. [Google Scholar] [CrossRef] [PubMed]

Gomes, L.C.; Di Benedetto, G.; Scorrano, L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol. 2011, 13, 589–598. [Google Scholar] [CrossRef] [PubMed]

Dalle Pezze, P.; Nelson, G.; Otten, E.G.; Korolchuk, V.I.; Kirkwood, T.B.; Von Zglinicki, T.; Shanley, D.P. Dynamic modelling of pathways to cellular senescence reveals strategies for targeted interventions. PLoS Comput. Biol. 2014, 10, e1003728. [Google Scholar] [CrossRef] [PubMed]

Garcia-Prat, L.; Martinez-Vicente, M.; Perdiguero, E.; Ortet, L.; Rodriguez-Ubreva, J.; Rebollo, E.; Ruiz-Bonilla, V.; Gutarra, S.; Ballestar, E.; Serrano, A.L.; et al. Autophagy maintains stemness by preventing senescence. Nature 2016, 529, 37–42. [Google Scholar] [CrossRef] [PubMed]

Korolchuk, V.I.; Miwa, S.; Carroll, B.; von Zglinicki, T. Mitochondria in Cell Senescence: Is Mitophagy the Weakest Link? EBioMedicine 2017, 21, 7–13. [Google Scholar] [CrossRef]

Ahmad, T.; Sundar, I.K.; Lerner, C.A.; Gerloff, J.; Tormos, A.M.; Yao, H.; Rahman, I. Impaired mitophagy leads to cigarette smoke stress-induced cellular senescence: Implications for chronic obstructive pulmonary disease. FASEB J. 2015, 29, 2912–2929. [Google Scholar] [CrossRef] [PubMed]

Araya, J.; Tsubouchi, K.; Sato, N.; Ito, S.; Minagawa, S.; Hara, H.; Hosaka, Y.; Ichikawa, A.; Saito, N.; Kadota, T.; et al. PRKN-regulated mitophagy and cellular senescence during COPD pathogenesis. Autophagy 2019, 15, 510–526. [Google Scholar] [CrossRef] [PubMed]

Demidenko, Z.N.; Blagosklonny, M.V. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 2008, 7, 3355–3361. [Google Scholar] [CrossRef] [PubMed]

Kwon, Y.; Kim, J.W.; Jeoung, J.A.; Kim, M.S.; Kang, C. Autophagy Is Pro-Senescence When Seen in Close-Up, but Anti-Senescence in Long-Shot. Mol. Cells 2017, 40, 607–612. [Google Scholar] [CrossRef] [PubMed]

Mai, S.; Muster, B.; Bereiter-Hahn, J.; Jendrach, M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy 2012, 8, 47–62. [Google Scholar] [CrossRef] [PubMed]

Myrianthopoulos, V.; Evangelou, K.; Vasileiou, P.V.S.; Cooks, T.; Vassilakopoulos, T.P.; Pangalis, G.A.; Kouloukoussa, M.; Kittas, C.; Georgakilas, A.G.; Gorgoulis, V.G. Senescence and senotherapeutics: A new field in cancer therapy. Pharmacol. Ther. 2019, 193, 31–49. [Google Scholar] [CrossRef] [PubMed]

Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet. 2005, 39, 359–407. [Google Scholar] [CrossRef]

Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta 2010, 100, 345–348. [Google Scholar] [CrossRef]

Aunan, J.R.; Watson, M.M.; Hagland, H.R.; Søreide, K. Molecular and biological hallmarks of ageing. Br. J. Surg. 2016, 103, e29–e46. [Google Scholar] [CrossRef]

Kornicka, K.; Sz?apka-Kosarzewska, J.; ?mieszek, A.; Marycz, K. 5-Azacytydine and resveratrol reverse senescence and ageing of adipose stem cells via modulation of mitochondrial dynamics and autophagy. J. Cell. Mol. Med. 2019, 23, 237–259. [Google Scholar] [CrossRef]

Lagouge, M.; Argmann, C.; Gerhart-Hines, Z.; Meziane, H.; Lerin, C.; Daussin, F.; Messadeq, N.; Milne, J.; Lambert, P.; Elliott, P.; et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 2006, 127, 1109–1122. [Google Scholar] [CrossRef]

Hubackova, S.; Davidova, E.; Rohlenova, K.; Stursa, J.; Werner, L.; Andera, L.; Dong, L.; Terp, M.G.; Hodny, Z.; Ditzel, H.J.; et al. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2. Cell Death Differ. 2019, 26, 276290. [Google Scholar] [CrossRef] [PubMed]

Herranz, N.; Gallage, S.; Mellone, M.; Wuestefeld, T.; Klotz, S.; Hanley, C.J.; Raguz, S.; Acosta, J.C.; Innes, A.J.; Banito, A.; et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat. Cell Biol. 2015, 17, 1205–1217. [Google Scholar] [CrossRef] [PubMed]

Laberge, R.-M.; Sun, Y.; Orjalo, A.V.; Patil, C.K.; Freund, A.; Zhou, L.; Curran, S.C.; Davalos, A.R.; Wilson-Edell, K.A.; Liu, S.; et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 2015, 17, 1049–1061. [Google Scholar] [CrossRef] [PubMed]

Ichim, G.; Lopez, J.; Ahmed, S.U.; Muthalagu, N.; Giampazolias, E.; Delgado, M.E.; Haller, M.; Riley, J.S.; Mason, S.M.; Athineos, D.; et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell 2015, 57, 860–872. [Google Scholar] [CrossRef] [PubMed]

Buondonno, I.; Gazzano, E.; Jean, S.R.; Audrito, V.; Kopecka, J.; Fanelli, M.; Salaroglio, I.C.; Costamagna, C.; Roato, I.; Mungo, E.; et al. Mitochondria-Targeted Doxorubicin: A New Therapeutic Strategy against Doxorubicin-Resistant Osteosarcoma. Mol. Cancer Ther. 2016, 15, 2640–2652. [Google Scholar] [CrossRef] [PubMed]

Evangelou, K.; Lougiakis, N.; Rizou, S.V.; Kotsinas, A.; Kletsas, D.; Muñoz-Espín, D.; Kastrinakis, N.G.; Pouli, N.; Marakos, P.; Townsend, P.; et al. Robust, universal biomarker assay to detect senescent cells in biological specimens. Aging Cell 2017, 16, 192–197. [Google Scholar] [CrossRef] [PubMed]

Rizou, S.V.; Evangelou, K.; Myrianthopoulos, V.; Mourouzis, I.; Havaki, S.; Athanasiou, A.; Vasileiou, P.V.S.; Margetis, A.; Kotsinas, A.; Kastrinakis, N.G.; et al. A Novel Quantitative Method for the Detection of Lipofuscin, the Main By-Product of Cellular Senescence, in Fluids. Methods Mol. Biol. 2019, 1896, 119–138. [Google Scholar] [CrossRef]

 

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

成人午夜视频在线| 日日摸夜夜添狠狠添久久精品成人| 亚洲国产色播av在线| 永久免费无码av在线网站| 天堂…在线最新版在线| 92电影网午夜福利| 亚洲精品日本久久一区二区三区 | 国产精品20p| 亚洲第一av片精品堂在线观看| 亚洲精品9999久久久久无码| 91丨九色丨91啦蝌蚪老版| 天天色天天色| 美女高潮久久| 亚洲国产永久| 国产天堂网| 亚洲黄色影视| 一级做a爰片久久毛片潮喷动漫| 人妻夜夜爽天天爽三区丁香花 | 2019nv天堂香蕉在线观看| 99视频网址| 美女av网| 色偷偷女人的天堂亚洲网 | 亚洲欧美日韩中文字幕在线一区| 国模大尺度自拍| 色欲悠久久久久综合区| 成人精品免费视频在线观看| 多p混交群体交乱小说h| 爱情岛论坛网亚洲品质| 亚洲日韩性欧美中文字幕| 国产经典一区| 国产igao为爱做激情在线| 国产一区二区视频在线| 日韩网站在线观看| 99re国产精品视频| 欧美精品a片久久www慈禧| 日韩在线观看精品| 操三八男人的天堂| www黄色在线观看| 成人男女啪啪免费观软件| 国产亚洲精aa在线看| 波多野结衣美乳人妻hd电影欧美| 99国内精品久久久久影院| 中文字幕日韩av| 黄色aaa视频| 99精品日本二区留学生| 久久在线| 亚洲婷婷五月综合狠狠app| 色婷婷av一区| 丁香五月天综合缴情网| 亚洲熟伦熟女新五十路熟妇| 欧美一级视频| 天天躁日日躁狠狠躁喷水软件| 无码国产精品一区二区免费式直播| 亚洲欧洲日产国码无码动漫| 国产伦精品一区二区三区视频新 | 日本熟人妻中文字幕在线| 国模冰莲大胆自慰难受| 国产日本免费| 少妇性l交大片免潘金莲 | av东京热无码专区| 久久一区二区视频| 嫩草视频免费观看| 亚洲 中文字幕 日韩 无码| 日韩av中文在线| 色八区| 欧美极品少妇xxxxⅹ喷水| 日本成人精品| 99热爱久久99热爱九九热爱| 在线免费激情视频| 最新中文字幕2019| 亚洲精品三级| 久久亚洲欧美日本精品| 成人看片在线观看| 国产精品午夜福利麻豆| 男女裸体下面进入的免费视频 | 久久密av| 九九99热久久精品离线6| 成人国产精品一区二区网站公司| 一个人在线免费观看www| 狠狠干在线| 91精品国产91久久久久游泳池| 中文字幕 视频一区| 欧美日韩一区二区在线视频| 亚洲日本乱码在线观看| 91国产一区| 中文字幕在线观看1| 欧美另类极品videosbest最新版本| 久久在线免费观看| 爽好多水快深点欧美视频 | 国产1区在线| 五月天婷婷视频在线观看| 国产精品久久影院| 人妻 日韩精品 中文字幕| 99视频观看| 黄色欧美视频| 99色在线视频| 鲁鲁网亚洲站内射污| 欧美福利专区| 亚洲精品无码av人在线观看国产| 国产喷水1区2区3区咪咪爱av | www色黄| 亚洲精品无码av黄瓜影视| 狠狠看| 亚洲视频网| 美国黄色a级片| youjizz视频| 台湾佬久久| 成人国产一区| 中国黄色a级片| 亚洲色图婷婷| 国产片性视频免费播放| 超碰97免费| 羞羞答答av| 日本亲与子乱人妻hd| 国产xxx| 日韩欧美在线视频播放| 女人18毛片水真多| 妺妺窝人体色www看美女| 亚洲日韩高清在线亚洲专区| 成人看的视频| 亚洲热热| 麻豆一二三区精品蜜桃| 亚洲色成人四虎在线观看| 91视频啊啊啊| 成人自拍视频网站| 久久婷婷激情综合色综合俺也去| 一区二区三区亚洲欧美| 久久ク成人精品中文字幕| 色葡萄影院| 搡女人真爽免费视频大全| 亚洲自拍偷拍欧美| 精品成人免费视频| 天天射夜夜骑| 中文无码第3页不卡av| 国产h视频在线观看| 国产成人8x视频一区二区| 亚洲男人天堂网| 成人韩免费网站| 欧美性猛交乱大交| 色妞综合网| 国产亚洲va天堂va777| 男人j进入女人j的视频免费的 | 亚洲第一成人网站| 狠狠色丁香五月综合婷婷| 日产中文字暮在线理论| 91干干| 7878成人国产在线观看| 成人精品在线观看视频| 播五月婷婷| 免费婷婷| 超碰在线9| 欧美精品一区二区免费 | 中文字幕91爱爱| 亚洲国产一区二区在线| 欧美日韩一区在线观看| 68日本xxxxxⅹxxx59| 中文字幕在线视频精品| 亚洲精品一级片| 麻豆av久久无码精品九九| 91成人xxx| 91视频综合网| 国产高清免费av| 天堂中文最新版在线中文| 黄色免费视频在线| 成人18视频在线观看| 91av久久| 黄色高清视频在线观看| 香港经典a毛片免费观看播放| 国产在线无码一区二区三区| 无码aⅴ精品一区二区三区浪潮| 午夜网站免费| 沈阳熟女露脸对白视频| 国产在线观看a| 中文人妻av久久人妻18| 天天综合干| 精品国产福利在线| 夜色精品| 日韩精品一区二区三区视频播放| 国产md视频一区二区三区| 女人与公拘交酡全过程| 人操人视频| 日韩专区中文字幕| 色婷婷激婷婷深爱五月| 少妇15p| 另类天堂av| 在线va视频| 成人亚洲欧美一区二区三区| 亚洲国产97色在线张津瑜| 老司机午夜精品视频资源| 国产69精品久久久久久妇女迅雷| 国产农村妇女毛片精品| 亚洲精品无码av黄瓜影视| 亚洲国产另类久久久精品| 久久久久久国产精品无码下载| 国产精品v欧美精品v日韩精品v| a级黄色片| 成人免费黄色网址| 男女扒开双腿猛进入免费看污| 九九热精品视频在线| 精品无码久久久久久久动漫| 亚洲偷偷自拍高清| 色综合久久久久久久| a国产免费| 国产精品久久久久久久久电影网| 亚洲第一视频在线| 亚洲字幕成人中文在线电影网| 久久人人爽天天玩人人妻精品| 亚洲精品五月| 成人做爰免费网站| 成熟丰满熟妇av无码区| 亚洲aⅴ欧洲av国产综合图片| 舒淇三级露全乳视频在| 久久不见久久见免费视频7| 国产精品激情| 玩弄漂亮少妇高潮白浆| 四虎永久在线精品免费无码| 欧美青草视频| 国产日韩欧美视频在线观看| 久久综合给综合给久久| 久久久水蜜桃| www.yeyyme成人看片| 精品伊人久久大线蕉色首页| 日韩久久久久久久久久| 欧美一区亚洲二区| 天天网综合| 国产又爽又黄又舒服的视频| 制服 丝袜 亚洲 中文 综合| av无码精品一区二区三区三级| 日本美女黄视频| 91精品国产99久久久久| 91视频在线视频| 夜鲁夜鲁狠鲁天天在线| 丁香五香天堂网| 日本伊人色| 青青草自拍| 亚洲精品蜜桃| 一本一道久久a久久综合精品| 国产69精品久久久久久久| 中文字幕123| 国产免费久久精品99re丫丫| av中文字幕网站| 啪啪后入内射日韩| 国产精品15p| 在线免费观看成人| 爱爱视频网站免费| 日本欧美另类| 一区二区天堂| 国产色诱视频在线播放网站| 成人片黄网站色大片免费观看| 国产黄色免费大片| 国产精品12页| 成人亚洲a片v一区二区三区动漫| 五月婷婷开心网| 天天插天天射| 亚洲成人免费看| 超碰人人网| 亚洲aⅴ欧洲av国产综合图片| 日本三级日产三级国产三级| 成人私密视频| 午夜在线看片| 毛片一级免费| 日本丰满大乳免费xxxx| 99精品视频在线观看免费蜜桃| 任我爽橹在线视频精品583| av福利网址| 爱性久久久久久久久| 久久精品99无色码中文字幕| 成人在线视频你懂的| 奇米二区| 国产在线999| 成人超碰在线| 懂色avcom| 91国语对白| 欧美丰满少妇高潮18p| 日韩一区二区三区视频在线观看| 日韩大片av| 久久精品国产大片免费观看| 五月天导航| 亚洲自国产拍揄拍| 精品欧美视频| 成人高清免费观看| 又大又长又粗又爽又黄少妇视频| 欧美日韩你懂的| 亚洲理论视频| 国产一区国产二区在线精品 | 欧美一级片在线| 亚洲精华国产| 日韩视频一区二区三区在线观看| 成年无码av片在线狼人| 天堂а在线中文在线新版| 久久老女人| 免费的色网站| 亚洲国产制服丝袜高清在线| 日本大香伊蕉一区二区| 麻豆影院免费夜夜爽日日澡 | 亚洲a麻豆乱潮| 超级大爆乳奶牛被调教出奶水| 日本少妇内射视频播放舔| 亚洲欧美日韩国产综合在线一区| 亚洲区一区二区三区| 欧美一区二区三区久久| 国产精品无套内射迪丽热巴| 青青草国产三级精品三级| 看全黄大色黄大片| 777国产盗摄视频000| 动漫无遮挡羞视频在线观看| 色噜噜av男人的天堂| 1000又爽又黄禁片在线久| 免费观看理伦片在线播放| 亚洲国产女人aaa毛片在线动漫| 久久久久久久香蕉| 成人免费毛片东京热| 国产传媒一级片| 婷婷日| 伊人久久大香线蕉成人| 欧美人牲| 丰满人妻被黑人中出849| 欧美激情国产在线| 亚洲成人精品在线| 欧美天天性影院| 日日操天天射| 少妇的丰满3中文字幕| 国产一二三区av| 久久91精品国产91久久跳| 日韩免费码中文在线观看| 男男羞羞视频网站国产| 国产美女精品人人做人人爽| 成人黄色在线观看| 久久午夜私人影院| 欧美丝袜脚交| 婷婷五月深爱综合开心网| 亚洲日韩爆乳中文字幕欧美 | 日韩中文字幕| 黄色激情毛片| 免费国产午夜高清在线视频| 丰满多毛的陰户视频| 国产裸体永久免费视频网站| 成在线人免费视频| 国产精品久久久久久99人妻精品| 婷婷色婷婷| 91亚洲国产成人精品一区二三| 欧美精品福利| 亚洲东方av| 草草视频在线| 亚洲色大成网站www在线观看| 无码国产成人午夜在线观看| 亚洲无线码免费| 97影视传媒| 中文字幕在线播放| 伊人久久91| 中文字幕乱偷在线小说| 伊在线视频| 日韩高清网站| 亚洲综合91| 亚洲jizzjizz日本少妇软件| 91草草草| 亚洲一级淫片| 久久午夜神器| 国产女人18毛片18精品| www在线免费观看视频| 色999av| 视频在线a| 黑人巨大99vs小早川怜子| 欧美交性又色又爽又黄| 性欧美一级毛毛片a| 人妻无码中文字幕免费视频蜜桃| 精品伊人久久| 亚洲视频在线视频| 午夜性| 狠狠色噜噜狠狠狠狠999米奇| 日本一级淫片免费啪啪3| 国产专区视频| 五月婷婷六月丁香综合| 697久久夜色精品国产| 亚洲欧美洲成人一区二区| 国产欧美在线观看不卡| 国产网红女主播精品视频| www17ccom小草影视| 98在线视频| 日本免费一区二区三区四区五区| a级高清免费毛片| 日韩欧美理论| 少妇裸体做爰免费视频网站| 亚洲图色视频| 无码成人精品区在线观看| 亚洲精品欧美二区三区中文字幕| 天堂网一区二区三区| 天天躁日日躁很很很躁| 欧美三级理论| 国产成人免费av| 日本xxx裸体xxxx偷窥| 91人人爽久久涩噜噜噜| 日本黄色中文字幕| 欧美日韩在线视频一区二区三区| 精品视频久久久久久| 粗喘呻吟撞击猛烈疯狂| 熟女人妻aⅴ一区二区三区电影| 午夜精品网站| 欧美整片sss| 国产成人免费无码视频在线观看m| 中文字幕人妻熟女人妻洋洋| 麻豆chinese极品少妇| 免费黄色大片| 久久精品国产精品亚洲38| 成在人线av无码免费漫画| 国精产品一品二品国精在线观看| 3d动漫精品一区二区三区 | 亚洲精品国产拍在线| 亚洲五码在线| 麻豆av免费看| 色先锋av| 色天使亚洲综合一区二区| 色多多www视频在线观看免费| 亚洲夜夜操| 人人爱爱人人| 亚洲中文字幕无码天然素人在线| 91porn国产成人福利| 久久久久性色av毛片特级| 亚洲啪av永久无码精品放毛片| 成人精品视频在线| 日日干夜夜操高清视频| 色婷婷狠狠| 天天操天天碰| 国产午夜精品美女视频明星a级| 超碰97人人射妻| 精品国产av一区二区三区| 在线亚洲+欧美+日本专区| 超碰在线人人干| 国产午夜亚洲精品理论片八戒| 亚洲欧美人色综合婷婷久久| 好色婷婷| 欧美成人久久久| 中文无码人妻影音先锋| 日本美女交配| 久久99这里只有精品| 国产精品特黄aaaa片在线观看| 亚洲狼人综合| 99久久精品免费看国产四区| 91久久捆绑调教美女| 久久精品99国产精品亚洲| 国产乱人伦偷精品视频aaa| 揉少妇高挺双乳| 日本在线观看| 性欧美bb| 五月天丁香激情| 亚洲精品午夜| 午夜av网址| 在线视频三区| 69xxx免费视频| 欧美大片网站| 亚洲国产av一区二区三区丶| 国产丰满老熟女重口对白| 欧美va视频| 99精品久久| 国产成人综合色在线观看网站| 日本少妇激情25p| 97国产在线播放| 国产黑色丝袜在线观看片不卡顿| av色哟哟| 日本欧美视频在线观看三区| √天堂中文官网8在线| 丁香伊人网| 黄色免费视频| 91福利在线看| 日本一区二区久久| 免费观看又色又爽又黄的传媒| 琪琪电影午夜理论片八戒八戒 | 欧美成人午夜免费影院手机在线看| 精品久久一区| 50岁熟妇大白屁股真爽| 国产a√精品区二区三区四区| 中文字幕久久综合久久88| 中文字幕日产乱码国内自 | 欧美在线观看一区二区三区| 国产福利视频在线观看| 99久久日韩精品免费热麻豆美女| 国产精品手机视频| 久久精品久久久久久噜噜老黄| 亚洲夜夜叫| 国产日韩综合av在线观看一区| 日韩少妇| 国产chinese中国xxxx| 日本视频在线观看免费| 青青草好吊色| 免费看欧美中韩毛片影院| 精品黄色一级片| 免费成人av网址| 精品在线二区| 色乱码一区二区三区麻豆| 骚色综合| 一区精品视频| www国产亚洲精品久久久| a级在线观看| 免费又黄又爽1000禁片| h视频在线免费看| 日韩久久久久久久| 一本之道综合在线| 国产亚洲tv在线观看| 丰满熟妇乱又伦在线无码视频| 一級特黃色毛片免費看| 亚洲乱码中文论理电影| 一本色道av立川理惠| 国产精品久久久久久久久久久久久久久久久久| 性仑少妇av啪啪a毛片| 人人妻人人澡人人爽偷拍台湾| 亚洲日本黄色片| 亚洲高清无吗| xsmax国产精品| 黄色天堂av| 国产成人精品亚洲日本777 | 国产剧情在线| 欧美肥婆性猛交xxxⅹ| 看全黄大色黄大片| 亚洲成人a v| 激情网av| 欧美福利视频一区| 日本熟熟妇xxxxx精品熟妇| 佐山爱成人av在线播放| 国产精品人成视频免| 国产日韩欧美一区二区三区乱码| 久久免费看少妇高潮a| 欧美图片一区二区| 在线免费黄色网| 黄色网免费看| 久久青草费线频观看| 欧美性videostv另类极品| 精品国产天堂综合一区在线| 国产高清狼人香蕉在线| 午夜香蕉网| 人禽交 欧美 网站| 亚洲性无码av在线欣赏网| 高潮av在线| 超碰牛牛| 日韩经典第一页| 亚欧美精品| 男生女生操操操| 欧美五月| 欧美18免费视频| 亚洲自拍中文| 久久99精品久久久久婷婷暖| av小说在线观看| 亚洲中文字幕精品久久久久久直播| 亚洲精品久久久久玩吗| av老司机福利| 天天视频亚洲| 一级黄色免费网站| aaa亚洲精品| 一本大道久久a久久综合婷婷| 天堂8中文在线最新版在线| 国产精品69午夜妇大片| 富婆xxxxx性猛交hd| 97夜夜澡人人双人人人喊| 亚洲一区二区三区av天堂| 装睡被陌生人摸出水好爽 | 精品国产乱码91久久久久久网站| 日批大全| 三级黄色网络| 亚洲精品久久无码av片| 成人av久久一区二区三区| 人妻少妇乱子伦精品| 性国产精品| 91精品久久久久久久久| 日韩香蕉网| 亚洲国产精品国自产拍av秋霞 | 欧美精品系列| 91插插插影院| 成人在线看片| 久久九九久精品国产| 国产白丝喷水娇喘视频| 国产精品视频全国免费观看| 无码成人午夜在线观看| 夜夜夜高潮夜夜爽夜夜爰爰| 久草新免费| 玖草影院| 色哟哟在线观看| www浪潮avcom| 99久久久99久久国产片鸭王| 久久成人国产精品入口| 久久亚洲欧美日本精品| 久久综合区| 久爱www人成免费网站| 麻豆视传媒精品av| 成人午夜天| 操天天| 成人国产精品日本在线| 91国在线| 亚洲国产成人va在线观看天堂| 亚洲一区二区观看播放| 丝袜在线视频| 国产69精品久久久久99尤物| 男人天堂视频在线| 久久久96| 国产高清女同学巨大乳在线观看| 亚洲国产精品无码7777一线| 日本成人一区二区三区| 高清日韩欧美| 欧美激情中文字幕| 在线精品亚洲一区二区绿巨人| 韩国不卡av| 男女啪啪网站大全免费| www黄色av| 国模叶桐尿喷337p人体| 韩漫动漫免费大全在线观看| 黄色片免费在线观看| 中日av乱码一区二区三区乱码| 97视频在线播放| 国产精品18久久久久久久久| 国产片一区二区三区| 日韩成人高清视频在线观看| 亚洲欧美综合网| 国产成人精品无码播放| 综合狠狠| 亚洲妇熟xxxx妇色黄| 韩国av网| 国产又爽又黄又舒服的视频| 四虎影视免费观看| 国产一级二级视频| 欧美日韩欧美日韩在线观看视频| 久久午夜精品| 亚洲产国偷v产偷v自拍色戒| 欧美成人www在线观看| 國产一二三内射在线看片| 狠狠色综合久久婷婷色天使| 黄色免费看视频| 一二三四国产精品| 老妇荒淫牲艳史| 国产一级视频在线播放| 国产超级av在线| 国产四区视频| 日本美女一区二区三区| 国产福利精品在线| 色老板精品视频在线观看| 国产精品三| 日韩新片av| 欧美乱妇高清无乱码| 曰本a∨久久综合久久| 吃奶呻吟打开双腿做受视频| 爱丝aiss无内高清丝袜视频| 国产sm重味一区二区三区| 国产粉嫩在线| 国产精品久久国产精品99盘| 色九九视频| 一区二区在线免费观看视频| 国产偷国产偷亚洲精品孕妇| 精品无码成人片一区二区98| vvv.成人观看视频| 国产精品一区二区av在线观看| 欧美人与动牲交zooz乌克兰| 动漫美女h黄动漫在线观看| 免费三级黄色| 秋霞在线观看秋| 第一福利精品500在线导航| √资源天堂中文在线| 官场艳妇疯狂性关系| 我把护士日出水了视频90分钟| 最近中文字幕2019在线一区| 91三级视频| 国产av高清怡春院| 日本免费人成视频在线观看| 亚洲综合影院| 亚洲黄色在线观看视频| 日本猛少妇色xxxxx猛交图片| 成人淫片免费视频95视频| 在线播放www| 天天成人| 国产精品日本亚洲欧美| 无码任你躁久久久久久老妇| 日韩人成| 国产亚洲va天堂va777| 欧美亚洲色综久久精品国产| 久久人人97超碰国产亚洲人 | 国产卡二卡三卡四卡免费网址| 好吊日视频在线| 欧美国产精品一二三| 国产精品久久精品| 欧色丰满女同hd| 国产无限制自拍| 日韩一级完整毛片| 欧美日韩精品亚洲精品| 国产在线h| www.色网站| 中文字幕 欧美精品 第1页 | 乱子真实露脸刺激对白| 国产美a三级三级看三级| www.国产在线| 国产做无码视频在线观看| 熟女俱乐部五十路二区av | 99热成人精品国产免费| 2024国产精品视频| 在线观看国产日韩| 亚州无限乱码一二三四麻豆| 浴室激情hd免费看| 尹人香蕉久久99天天拍久女久| 风流少妇按摩来高潮| 亚洲国产欧美日本视频| 免费看黄色av| 中文无码精品a∨在线观看不卡| av成人在线播放| 伊人蕉| 激情五月婷婷网| 各种少妇正面着bbw撒尿视频| 欧美毛片在线| 色吧综合网| 夜夜爽天天操| 丝袜视频一区| 99这里视频只精品2019| 久久www成人免费直播| 国内精品久久久久影院蜜芽| 欧美日韩精品一区二区视频| 国产美女91呻吟求| 亚洲中文无码永久免费| 少妇之白洁番外篇| www中文在线| 欧美一区二| 午夜av无码福利免费看网站| 免费三级毛片| 又爽又黄禁片1000视频vr| 国产在线资源| 亚洲旡码av中文字幕| 中国凸偷窥xxxx自由视频妇科| 精品国产美女福到在线不卡 | 动漫无遮挡h纯肉亚洲资源大片 | 国产婷婷精品av在线| 超碰在线人人| 国产男女精品| 国产精品96久久久久久| 玖玖在线视频| 伊人久久大香线蕉av五月天| 香蕉在线精品视频在线| www.91香蕉| 国产浮力第一页| 国产欧美va天堂在线电影| 黄色无遮挡网站| 色婷久久| 免费黄网站在线看| 精品一区二区三区不卡| 国产夫妻性爱视频| 强行交换配乱婬bd| 好吊操av| 国产精品无码v在线观看| 久热精品视频| 亚洲毛片一级| 在线观看黄色片网站| 欧美日韩一级二级| 国产精品自产拍在线观看| 亚洲a∨天堂最新地址| 国产理论av| 欧美日韩成人一区二区| 亚洲日韩av无码中文| 福利视频一区二区| 无码人妻久久久一区二区三区| 丰满饥渴老女人hd69av| 国产av无码一区二区二三区j| 成人男女做爰免费视频网老司机| 亚洲区一区二区三区| 久久国产精品一区二区| 亚洲国产精品毛片| 五月天一区二区三区| 少妇看片| 久久久久久一区二区三区四区别墅 | 性xxxxx欧美老富婆| 日韩一级视频| 国产亚洲黄色片| 激情文学欧美| 香港三日三级少妇三级66| av av片在线看| 欧美日韩网| 精品国产中文字幕| 久久久久久久久亚洲| 国产无遮挡又黄又爽高潮| 久久大胆| 91成人短视频在线观看| 操碰91| 中文成人在线| 欧美视频一区二区| 欧美狠狠爱| 手机av资源| 一区二区三区在线看| 亚洲婷婷综合色香五月| 九九精品影院| 国产在线资源| 国产精品亚洲专区无码蜜芽| a在线视频播放观看免费观看| 欧美一级黄色毛片| 少妇性l交大片免费快色| 一级做a爰片久久毛片| 少妇高潮九九九αv| 久久精品国产免费观看三人同眠| 国产精品久久久免费| 国产freexxxx性播放麻豆| 日本三级午夜理伦三级三| 亚洲毛片视频| 国产日韩在线观看一区| 日韩精品一卡二卡| 国产性xxxxx| 成人精品国产一区二区4080| 久久久久亚洲国产av麻豆| 国产福利姬喷水福利在线观看| 精品福利一区| 双腿张开被9个男人调教| 亚洲大成色www永久网站动图| 亚洲尹人| 777cc成人| 日韩精品一区二区在线播放| 999久久精品| 美女国产精品| 亚洲精品一区| 男人的天堂免费一区二区视频| 狠狠色网| 97日日碰人人模人人澡| 欧美激情一区二区| 成人亚洲欧美| 人妻系列无码专区喂奶| 欧美成人91| 性欧美ⅴideo另类hd| 亚洲色中文字幕无码av| 日本a视频在线观看| 亚洲免费小视频| 三级免费观看| 99热在线观看| 女女av在线| 亚洲曰本女同2| 六月婷婷中文字幕| 国产清纯白嫩初高生在线观看| 女优中文字幕| 日日夜夜婷婷| 成人伊人网站| 免费在线观看的黄色网址| 日韩xxx视频| 精品动漫3d一区二区三区免费版 | www啪啪| 亚洲视频在线观看免费的欧美视频| 一级黄色性感片| 成人aaa片一区国产精品| 色玖玖| 无码字幕av一区二区三区| 日韩深夜福利| 插插无码视频大全不卡网站| 美女张开腿给男人桶爽久久| 国产777涩在线 | 美洲| av无码av高潮av喷吹免费| 国产精品入口a级| 亚洲爆乳成av人在线蜜芽| 国产乱色| 伊人久久精品无码麻豆一区| 国产黄色精品网站| 偷窥掀裙video| 久久久精品一区| 日韩免费视频一一二区| mm1313亚洲精品| 2021精品国产自在现线看| 成人18网站| 91福利在线观看| 热热av| 九九小视频| 三个男吃我奶头一边一个视频 | 91精品国产综合久久久久| 在线观看色网站| 日韩毛片欧美一级a| 国产精品爆乳在线播放| 日韩一区二区三区北条麻妃| 国产资源网| 日本美女全裸| 202丰满熟女妇大| 亚洲色偷偷偷网站色偷一区| 91porn破解版| 国精品一区| 特级黄色大片| 亚洲精品沙发午睡系列| 欧美大胆老熟妇乱子伦视频| 久久6精品| 亚洲va视频| 国内精品自在拍精选| 成人免费大片黄在线观看com| 高清一级片| 精品成人免费自拍视频| 国产www在线观看| 亚洲成人免费观看| 亚洲一久久久久久久久| 嫩草在线看| 东方欧美色图| 久草福利资源在线| 另类少妇人与禽zozz0性伦| 成人免费在线播放视频| 天天舔天天干| 国产精品爽爽v在线观看无码| 亚洲淫片| 亚洲国产熟妇无码一区二区69 | 人人澡人人澡人人看添av| 91丨porny丨蝌蚪新疆| 韩国午夜理伦三级在线观看仙踪林| 久久99国产精品久久99果冻传媒| 国产高潮抽搐喷水高清| 国内免费自拍视频| 亚洲福利视频网| 99久久国产综合精品五月天喷水| 国产又黄又爽又刺激的免费网址| 欧美在线日韩精品| 正在播放亚洲精品| 51精品视频在线视频观看 | 少妇思春三a级| www久久视频| 天天综合天天色| www...zzz成人啪啪| 爽到高潮无码视频在线观看| 99久久99久久加热有精品| 欧美成人免费看 | 在线观看免费日韩av| 国产精品白嫩白嫩大学美女| 久久性生活片| 不卡一卡二卡三乱码免费网站| 偷看少妇自慰xxxx| 色依依av在线| 亚洲骚| 国产又黄又湿| www色com| 亚洲中字慕日产2020| 久章草在线精品视频免费观看| 一级黄视频| 蜜臀av人妻国产精品建身房| yjizz国产| 天堂中文在线最新版地址| 亚洲人成电影综合网站色www| 激情av网站| 成人欧美日韩一区二区三区| 好爽好紧好大的免费视频国产| 美女午夜激情| 自拍偷亚洲产在线观看| 久久久久国产精品www| 一区二区三区成人| 自拍 高清 日韩 欧美 另类| 高清无码爆乳潮喷在线观看| 亚洲欧美日韩一区二区三区在线| 国产成人在线免费观看| 华人少妇被黑人粗大的猛烈进| 亚洲国产成人综合| 天天天天天天干| 影音先锋每日av色资源站| 日本亲子乱子伦xxxx30路| 中文字幕av无码专区第一页| 国产精品外围| 97干干| 国产精品无卡毛片视频| 2019最新久久久视频精品 | 成人影院中文字幕| 免费观看日韩毛片| 青青在线| 99视频精品全部在线观看| 色偷偷免费| 国产精品麻豆成人av网| 亚洲欧洲日本一区二区三区| 中文字幕无码肉感爆乳在线| 国产日韩欧美亚洲精品中字| 无码高潮喷水在线观看| 日本3p视频| 国产成人亚洲综合无码品善网 | 在线va视频| 国产男女精品视频| 欧美福利一区| 日韩免费中文字幕| av手机免费观看| 亚洲 日韩 国产 中文有码| 亚洲国产精品91| 黄色精品网站| 免费成人黄| www.日日| 人人做人人爽久久久精品 | 麻豆一精品传媒卡一卡二传媒| 国产成人无码a在线观看不卡| 99久久国产精| 成人污污www网站免费丝瓜| 99爱国产精品免费高清在线| 人妻少妇88久久中文字幕| 两个男人吮她的花蒂和奶水视频| 色欲天天婬色婬香综合网完整版| 国产精东天美av影业传媒| 国产自在现线2019| 免费黄色链接| 玩弄japan白嫩少妇hd| 最新国产成人无码久久| 无码三级av电影在线观看| 国内精品伊人久久久久影院对白| 狠狠摸狠狠澡| 特级黄色毛片| 综合久久婷婷综合久久| 欧美牲交a欧美牲交aⅴ免费| 精品黄网站| 精品美女一区二区| 欧美日韩精品一区二区三区蜜桃| 日韩一卡二卡在线| 老色鬼在线精品视频| 99精品国产福利在线观看| 国产一区久久| 51精品免费视频国产专区| 天天玩夜夜操| 亚洲香蕉aⅴ视频在线播放| 91精品国产综合久久国产大片| 精品日韩欧美一区二区在线播放| 极品福利在线| 97精品国产自产在线观看永久 | 国产精品va尤物在线观看| xxxxhd欧美| a天堂中文网| 成人羞羞国产免费软件小说| 无码播放一区二区三区| 草的我好爽视频| 窝窝午夜精品一区二区| 日本久久精品少妇高潮日出水 | 亚洲成a人片777777| 国产精品com| 草色网| 可以看的av网站| 国产激情二区| 中文有码亚洲制服av片| 天堂中文在线看| 性爱免费视频| 巨大乳女人做爰视频在线看| 无码任你躁久久久久久久| 国产色诱视频在线播放网站| 日韩美女爱爱| 国产精品 无码专区| 久久久99精品免费观看乱色| 亚洲午夜福利精品久久| 亚洲色婷婷久久精品av蜜桃| 国产又白又嫩又紧又爽18p| 成人aaa片一区国产精品| 国语精品一区二区三区| 中国美女乱淫免费看视频| 女同性恋毛片| 国产精品久久午夜夜伦鲁鲁| 国产片黄色| 欧美人与动牲交xxxxbbbb| 自拍亚洲综合在线精品| 红桃视频 国产| 亚洲资源网站| 好爽好黄的视频| 成 人 社区在线视频| 水中色av综合| va免费视频| 国产精品 视频一区 二区三区| 成人国内精品久久久久影院vr| 大尺度激情吻胸视频| 精品久久久久久无码中文字幕| a天堂视频| 日本一区二区在线免费观看| 成人h在线观看| av无码精品一区二区三区| 国产真实迷奷在线播放| 欧美老妇大p毛茸茸| 欧美毛片无码又大又粗黑寡妇| 久久久不卡| 2021最新久久久视精品爱| 国产肥老妇对白清| 亚洲人成人网色www| 国产精品久久久久久久久久久久久久久久| 国产综合久久久久鬼色| 天堂中文在线资| 一卡二卡三卡在线观看| 粉嫩久久久久久久极品| 欧美 亚洲 日韩 中文2019| 在线色导航| 日本人裸体做爰视频| 久久九色| 7x7x7x人成影视| 亚洲欧洲中文日韩乱码av| 精品国产成人av在线免| 麻花传媒在线mv免费观看视频| 99自拍偷拍视频| 亚洲成a人片在线观看www| 免费黄色特级片| wwwxxx 日本| 婷婷丁香激情| 国产拍揄自揄精品视频| 一区二区三区av| 性一交一伦一视一频| 欧美日韩一本| 亚洲第一成人av| 同性做爰猛烈全过程| 日韩免费无砖专区2020狼| 久操超碰| 欧洲熟妇色xxxx欧美老妇多毛| www788com色淫免费| 无码人妻av一区二区三区蜜臀| 国产超碰人人模人人爽人人添| 成人午夜激情网| 无遮挡又黄又刺激又爽的视频| 久久精品国产99国产| 99热久久免费频精品18| 欧美亚洲色图视频| 欧美亚洲免费| 久久精品人人做人人爽| 伊人色综合久久天天五月婷| 欧美综合77777色婷婷| 日产mv免费观看| 国产小视频网站| 69视频网站| 久久亚洲国产精品五月天婷| 小荡货奶真大水真多紧视频 | 亚洲一区精品在线| 日本熟妇色xxxxx日本免费看| 每日av在线| 国产91丝袜在线播放| 国产亚洲人成a在线v网站| 国产小视频在线看| 99re6热在线精品视频播放| 亚洲蜜臀av乱码久久精品蜜桃| 欧美另类videossexo高潮| 少妇高潮尖叫黑人激情在线| 亚洲色精品vr一区二区| 99riav国产| 久操不卡| 黄色永久视频| 日韩午夜一区二区三区| 夜夜嗨av一区二区三区四季av | 伊人色播| 亚洲一区二区乱码| 性色av一区二区三区| 亚洲精品一卡2卡三卡4卡| 日本少妇无码精品12p| 中文字幕亚洲日本| 色图自拍偷拍| 中文国产字幕| 亚洲中文无码av永久不收费| 91.xxx.视频| 日韩精品成人在线| 免费无码又爽又刺激激情视频| av网站在线观看免费| 福利视频三区| 国产韩国精品一区二区三区久久| 激情超碰| 狼人射综合| 美女少妇翘臀啪啪呻吟网站| 色五月丁香六月欧美综合| 亚洲最大无码中文字幕| 国产www精品| 永久久久免费人妻精品| 日韩va中文字幕无码电影| 亚洲学生妹高清av| 夜夜爽久久揉揉一区| 日本理论片| 亚洲乱亚洲| 人妖天堂狠狠ts人妖天堂狠狠| 久久精品操| 狠狠干美女| 与黑人高h系列辣文| julia乱码中文一二三区| 日本久久精品| 8×8x拔擦拔擦在线视频网站| 亚洲а∨天堂男人无码| 不卡的av在线免费观看| 亚洲成l人在线观看线路| 97青娱国产盛宴精品视频| 中文字幕狠狠干| 国产乡下妇女做爰| 长篇乱肉合集乱500小说日本| 四虎在线观看| 又污又黄的视频| 青青草免费在线视频| 黄色片视频网站| 亚洲综合色站| 国产亚洲精品码| 欧洲精品视频在线观看| 91福利社区在线观看| 2021国产精品午夜久久| 免费观看欧美一级| 国产精品天干天干在线观看澳门| 日韩123| 欧洲精品久久久av无码电影| ass艳妇猛性bbwbbw1| 91成人国产| 北条麻妃二三区| 亚洲第一字幕| 欧美亚洲精品一区二区三区| 日韩美女免费视频| 日本久久中文字幕| 天堂69堂在线精品视频软件| 精品一级少妇久久久久久久| 东京热人妻无码一区二区av| 成人一二三区| 国产一级啪啪| 国产在线欧美| 香蕉人人精品| 日本中文字幕在线视频二区| 亚洲aⅴ天上人间在线观看| 成人乱人乱一区二区三区| 亚洲人成欧美中文字幕| 日本亚洲黄色| 国产怡红院| 免费激情av| 亚洲天堂v| 午夜人性色福利无码视频在线观看| 亚洲最大在线观看| 男女无遮挡毛片视频免费| 亚洲成人诱惑| 台湾佬久久| 成人无码潮喷在线观看| 国产肉体xxx裸体312大胆| 69av在线| 中国丰满少妇熟乱xxxx| 正在播放国产大学生情侣| 尤物亚洲国产亚综合在线区| caopor在线视频| 欧美狠狠操| 欧美老熟妇乱大交xxxxx| 亚洲va视频| 久久久精品2020免费观看| 美日韩av| 久久99精品久久久久婷婷| 精品91视频| 国产黄色特级片| 北岛玲一区二区| 中文字幕亚洲欧美| 91桃色网站| 夜夜躁很很躁日日躁2020| 国产成人精品亚洲日本专区61| 最近中文2019字幕第二页| 多毛小伙内射老太婆| 欧美成人精品视频在线不卡| 国产精品无圣光一区二区| 日韩av手机在线观看| 国内精品久久人妻朋友| 国产精品美女www爽爽爽动态图| 91欧美一区| 一本色道av| 免费观看无遮挡www的视频| 欧洲亚洲国产成人综合色婷婷| 日韩精品免费视频| 欧美理论在线| 在线视频精品中文无码| 成人精品在线观看| 欧美成人精品三级网站下载| 天天av天天翘天天综合网色鬼| 亚洲青青草| 91青青草视频| 国产日韩精品视频无码| 色哟哟在线网站| 国产精品成人亚洲777| 欧美 亚洲 一区| 日韩在线一卡二卡| 国产黄三级看三级| 欧美美女在线观看| 免费看一级黄色大全| 韩国黄色网| 免费精品国偷自产在线2020 | 天天摸天天做天天爽| 蜜桃色欲av久久无码精品软件| www国产无套内射com| 久久一区二区视频| 国产精品卡一卡二卡三| 狠狠色噜噜狠狠狠8888米奇| 亚洲天堂bt| 看黄色一级视频| 亚洲一卡二卡三卡四卡在线看| 欧美国产日韩在线观看| 国产无套精品| 久久精品国产av一区二区三区| 国产黄色高清视频| 乱码一区二区三区| 国产18禁黄网站免费观看| 3d动漫啪啪精品一区二区中文字幕| 亚洲国产精品久久久久久久| 中文免费在线观看| h视频免费在线| 一区两区小视频| av桃色| 中文字幕xxx| 偷窥自拍999| 日本公与熄乱理在线播放| 成人久久久久| 美女啪啪av| 久视频精品线在线观看| www成人免费| 日本免费毛片| 九九九亚洲| 免费黄色在线网址| 91国在线观看| 欧美亚洲精品一区二区在线观看 | 美女毛片网站| 狠狠色丁香九九婷婷综合五月| 婷婷六月在线精品免费视频观看| 国产又黄又嫩又滑又白| 欧美亚洲综合成人a∨在线| 美女激情网站| 91国内| 奇米二区| 亚洲欧美在线一区中文字幕| 狠狠躁夜夜躁av网站中文字幕| 国产大学生自拍视频| 免费成人国产| 中国a毛片| 久久国产欧美日韩精品| 一級特黃色毛片免費看| 日韩精品短片| 少妇福利在线| 国产尤物在线视精品在亚洲 | 激情伦成人综合小说| 亚洲女同ⅹxx女同tv| 最近的中文字幕在线看视频| 色01看片网| 欧美欧美欧美欧美| 色噜噜在线播放| 欧美一级不卡视频| 国产交换配乱婬视频偷网站| 亚洲中文字幕国产综合| 国产激情无码视频在线播放| 人妻丰满熟妇av无码片| 日韩精品中文字幕一区| 日老女人视频| av在线免费播放| 欧美午夜大片| 一级做a视频| 性国产牲交xxxxx视频| 嫩草影院在线观看视频| 国产l精品国产亚洲区久久| 免费观看全黄做爰大片国产| 亚洲一区精品二人人爽久久| 国产精品视频熟女韵味| 一二三国产777avav| 爱搞国产| 国产成人自拍网| av在线免| 欧美日韩观看| 精品午夜福利1000在线观看| 欧美视频亚洲图片| 精品国产乱码久久久久久移动网络| 欧美白嫩少妇xxxxx性| 日本在线二区| www.色综合| 中文字幕av无码一区二区三区| 色人阁网站| 亚洲精品乱码久久久久久v| 亚洲国产日韩a在线亚洲| 久在操| 亚洲高清视频在线播放| 欧美综合77777色婷婷| 视频一区二区无码制服师生| 免费无码又爽又刺激高潮的app | 日本黄色美女| 侵犯の奶水授乳羞羞游戏| 九九热视频免费| 亚洲石原莉奈一区二区在线观看 | 秋霞av鲁丝片一区二区| 亚洲日韩av无码一区二区三区| 隔壁人妻偷人bd中字| 青青草超碰在线| 男女一进一出超猛烈的视频不遮挡在线观看 | 国产主播av在线| 男女一级特黄| 亚洲精品456在线播放dvd| 亚洲国产成人精品久久久国产成人| 久草免费在线播放| 米奇7777狠狠狠狠视频影院| 国产精品7777cos| 亚洲国产精品久久久久久久久久| 久久一本久综合久久爱| 国产私拍| 国产图区| 日产一区日产2区| 老牛嫩草一区二区三区眼镜 | 中国少妇内射xxxx狠干| 欧美色噜噜| 在线播放av网址| 青青国产揄拍视频在线观看| 日本视频免费高清一本18| 中文字幕人妻第一区| 2018天天弄| 在线日韩欧美| 欧美肥胖老妇bbw| 探花视频在线版播放免费观看 | 亚洲第一色站| 亚洲一区视频在线| 777米奇久久最新地址| 国产黄色免费片| 国产精品美女久久| 欧洲视频在线观看| 亚洲精品一区二区五月天| 亚洲色偷偷偷综合网| av不卡在线免费观看| 久久久久精| 992tv成人国产福利在线观看| 中文字幕久久精品一区二区三区| 外国成人| 一区二区三区午夜无码视频| 国产精品久久久久久久影院| 男人的天堂视频网站| 69午夜免费福利| 天堂在线www| 久久99精品国产99久久6| 毛片你懂的| 成人午夜视频网站| 老女人x88av导航| 亚洲综合色88综合天堂| 国产老女人乱淫免费可以| 色女人在线| 99午夜| 超碰人人擦| 亚洲中文在线播放一区| 99色综合网| 免费在线观看a级片| 四虎国产精品免费久久| 国产十八禁真成了| 国产av久久久久精东av| 亚洲日韩av无码中文字幕美国| 天天综合在线视频| 国产真人性做爰久久网站| 思思99精品视频在线观看| 久久99久久99精品免观看粉嫩| 日韩九九九| 99精品一区二区三区无码吞精| 午夜国产一区二区三区四区| 久久99热这里只有精品国产| 一级做性色a爱片久久毛片欧| 久久久91精品| 欧美国产日韩a欧美在线观看 | 99re只有精品| 免费观看日批视频| 亚洲高请码在线精品av| 97爱爱| 色婷婷视频在线观看| 国产三级在线观看播放| 一区不卡在线| 国产一乱一伦一情| 免费看a级黄色片| 国产精品熟女人妻| 国产亚洲欧美一区二区| 婷婷嫩草国产精品一区二区三区| www亚洲资源| 亚洲午夜无码久久yy6080| 国产亚洲日韩在线一区二区三区 | 少妇的肉体aa片免费| 校园春色 亚洲色图| 国产微拍精品一区| 国产性按摩| 欧美又粗大人妖一进一出| yy1111111少妇影院免费| 中文字幕不卡一区| 欧美二级片| 久久网中文字幕日韩精品专区四季| 在线免费国产视频| 西西人体大胆瓣开下部自慰| 国产免费无遮挡吸乳视频app| 成人91av| 亚洲 日韩 国产欧美 另类| 欧日韩av| 四色成人网| 亚州欧美色图| 色黄大色黄女片免费中国| 狠狠干快播| 加勒比色综合久久久久久久久| 福利视频免费观看| 粉嫩av一区二区三区免费观看喜好| 亚洲国产精品无码久久久蜜芽| 国产 日韩 欧美 中文 在线播放| 成年人黄色大全| 五月天伊人网| 久久免费福利视频| 成人少妇高潮流白浆| 热re99久久精品国99热| 毛片av中文字幕一区二区| av在线浏览| 国产玖玖玖九九精品视频靠爱| 日韩内射美女人妻一区二区三区 | 久久影视中文字幕| 久久大片| 免费观看毛片网站| 亚洲另类激情综合偷自拍图片 | 激情五月av久久久久久久| 日本三级网址| youjizz少妇| 日韩久久影院| 久久国产热视频| 亚洲精品国产品国语在线观看| 人人草网站| 鸥美毛片| 98国产精品| 伊伊人成亚洲综合人网| 97涩涩图| 国内精品小视频| 天堂网2014| 97精品久久天干天天| 欧美性猛交xxxⅹ乱大交小说一| 日韩va亚洲va欧美va久久| 欧美日韩黄色片| 国产又粗又猛又爽视频上高潮69| 91精品久久久久| 日夜啪啪一区二区三区| 新狼窝色av性久久久久久| 国产丝袜在线观看视频| 亚洲国产高清在线一区二区三区| 日韩少妇| 欧美一级黄色录像| 中文字幕一区二区三区视频| 麻豆一级片| 免费观看美女裸体网站| 国产模特嫩模私拍视频在线| 色欲av无码无在线观看| 成人免费毛片明星色大师| 国产成人亚洲综合a∨婷婷| 乱人伦中文无码视频| 国内熟妇人妻色无码视频在线| 99福利资源久久福利资源| av毛片大全| 亚洲国产成在人网站天堂| 欧美三日本三级少妇三99r| 韩国午夜福利片在线| av福利网址| 久久久精品一区二区三区| 毛茸茸日本熟妇高潮| 一亚洲乱亚洲乱妇23p| 一及黄色毛片| www激情网| 国产男人的天堂| 粉嫩av国产一区二区三区| 又黄又爽又猛的视频免费| 国产精品国产三级国产aⅴ中文| 中出内射颜射骚妇| 四虎成人av| 欧美另类与牲交zozozo| 午夜理伦三级理论三级| 中文免费视频| 色综合久久久久久久| 久操亚洲| 亚洲熟女乱色一区二区三区| 午夜偷拍视频| 日本α片无遮挡在线观看| 久久综合给合久久狠狠狠97色 | 国产无套粉嫩白浆内精品| 91精品国产综合久久久久久蜜臀| 亚洲色av性色在线观无码| www婷婷色| 色葡萄影院| wwww在线观看| 丰满少妇aaaaaa爰片毛片| 亚洲最黄视频| 免费无人区男男码卡二卡| 免费国产作爱视频网站| 在线视频日韩| 亚洲色图13p| 国产丰满乱子伦无码专区| 少妇坐莲好爽91| 日韩欧美成| 美女视频黄的全免费视频网站| 五月开心婷婷六月丁香婷 | 羞羞视频成人| 人人草在线视频| 亚洲卡一卡2卡3卡4精品| 91丨porny在线| 色欲久久久天天天综合网| 香蕉在线播放| 色福利网| 久久免费视频观看| 无人区乱码一区二区三区| 国产精品欧美亚洲| 日韩avwww| 哺乳援交吃奶在线播放| 狠狠搞av| 日韩中出| 久久香综合精品久久伊人| 51福利视频| 久久精品免费一区二区喷潮| 性动态图av无码专区| 免费视频久久久| 久久免费看少妇| 久久亚洲欧美日本精品| 久久国产精品免费| 日本污网站| 亚洲爽爆| v888aⅴ视频在线播放| 五月婷婷伊人网| 亚洲天堂bt| 婷婷av在线| 99久久欧美日韩国产二区| 日本高清在线观看视频| 黑料av在线| 韩国三级与黑人| 1区2区3区视频| 黄色网址国产| 成人h在线观看| 国产午夜福利片| 最新一区二区三区| 午夜成人性刺激免费视频| 久久久综合九色综合| 日韩在线一区二区三区影视| 多p混交群体交乱在线观看| 欧美真人性做爰全过程| 国产精品99久久久久久人免费| 国精品无码一区二区三区在线| 无码aⅴ在线观看| 人妻av无码专区久久| 青青草在线免费视频| 91看片视频| 69174欧美丰满少妇猛烈| 日本一道高清一区二区三区| 91国内精品久久久| 国产超碰人人爽人人做| 亚洲网站在线免费观看| 成人在线观看小视频| 色婷在线| 久久精品国产999久久久| 国产片精品av在线观看夜色| 老司机久久精品最新免费| 亚洲日韩视频| 麻豆国产av超爽剧情系列| 亚洲黄色毛片| 九九免费精品视频| 顶级欧美熟妇高清xxxxx| 国语自产拍无码精品视频在线| 天天爽天天插| 亚欧成人| 国产清纯在线一区二区| 四虎永久在线精品免费播放| 成人看| 亚洲少妇网| 偷窥国产亚洲免费视频| 国产精品尹人在线观看| 日韩欧美一级片| 三级av在线| 亚洲熟妇中文字幕五十中出| 精品成人av| 国产成人自拍视频在线观看| 狠狠干2023| 被窝影院午夜无码国产| 一道本视频在线| 69视频在线观看| 天天爽夜夜爽精品视频婷婷| 肉视频在线观看| 欧美不卡高清一区二区三区| 国产第一福利| 亚洲热视频| 欧美在线aa| www欧美成人| 中文字幕韩国三级理论| 欧美xx在线| 国产情侣草莓视频在线| 午夜福利视频250| 午夜无码大尺度福利视频| 久久999视频| 香蕉啪啪网| 日韩色图视频| 懂色av噜噜一区二区三区av88| 日本六九视频69jzz| 亚洲中文在线精品国产| 成人综合色在线一区二区| 18禁超污无遮挡无码网址极速| 国产男女猛烈无遮挡a片漫画| 午夜影院色| zzzwww在线观看免| 国产毛片久久久久久国产毛片 | 日韩三级大片| 欧美亚洲日本国产黑白配| 欧美男人的天堂| 青青久久国产| 超碰免费在线观看| 亚洲另类欧美综合久久图片区| 年代肉高h喷汁呻吟快穿| 伊人久久精品欧洲综合网| 黄色a免费| 人妻熟女一区二区aⅴ千叶宁真| 亚洲线精品一区二区三区八戒| 999黄色片| 亚洲一线二线三线写真| 色婷婷国产精品综合在线观看 | 亚洲日韩乱码中文无码蜜桃| 亚洲色大成网站www| 成片在线看一区二区草莓| 上司人妻互换中文字幕| 中日韩精品视频| 老司机久久99久久精品播放| 久久精品人人做人人爱爱| 久久毛片网| 成人免费777777| 亚洲中亚洲字幕无线乱码| 精品欧美аv高清免费视频| 无码一区二区三区在线| 日韩中文字幕在线观看视频| 日本成人在线观看网站| 男女吻胸做爰摸下身| 免费国产视频| 女同性恋毛片| 又黄又爽又色的视频| 人人超人人超碰超国产97超碰| 亚洲免费国产午夜视频| 男女视频一区二区| 国产亚洲日韩在线一区二区三区 | 国产一区二区三区在线视频| 黄在线免费观看| 国产乱人伦精品一区二区在线观看 | 96av视频| 欧洲亚洲女同hd| 国产成人精品人人2020视频| 亚洲精品香蕉| 含紧一点h边做边走动免费视频| 少妇视频一区| 四川丰满少妇被弄到高潮| a少妇| 无套内谢少妇毛片免费看| 亚洲一级理论片| 日韩性色| 337p日本欧洲亚洲大胆人人| 中文字幕无码乱人伦在线| 91精品国产91久久久久久最新 | 亚洲天堂男人影院| 桃色在线视频| 欧美在线一二三四区| 免费观看h片| 成人激情视频网| 国产久色在线拍揄自揄拍| 中文字幕精品亚洲无线码vr| 免费一级特黄特色毛片久久看| 日韩精品一区中文字幕| 大尺度做爰呻吟62集| 欧美日韩色片| 中文字幕乱码一区二区三区免费| 天天干狠狠插| 国产偷抇久久精品a片69麻豆| 中文久久久久| 久草在线看片| 午夜性开放午夜性爽爽| 内射少妇36p九色| 欧美激情图片| 亚洲高清无在码在线电影不卡| 亚洲最大av一区二区三区| 无套内谢孕妇毛片免费看看| 99九九久久| 好吊日免费视频| 97国产精品久久久| 经典av在线| 免费精品在线| 成·人免费午夜无码视频| 国产av老师丝袜美腿丝袜| mm131亚洲精品| 亚洲a∨无码一区二区| 日韩一级视频在线| 国产在线第一区二区三区| 午夜激情影院在线观看| 日本一级黄色毛片| 91av在线视频播放| av免费视屏| 人人干人人模| 性史性高校dvd毛片| 麻豆av网| 亚洲欧美色国产综合| 日韩免费无码一区二区视频| 在线a亚洲视频播放在线观看| 青青免费视频在线| 国产成人三级| 国产精品区二区三区日本| 久久精品无码一区二区日韩av| 无码人妻丰满熟妇区免费| 国产无遮挡免费观看视频网站| 老熟女一区二区免费| 欧美又大又硬又粗bbbbb| 九九热九九热| 亚洲精品视频在线播放| 久久狠狠色噜噜狠狠狠狠97| 一级不卡毛片| 欧美色插| 亚洲天堂资源| 日本三不卡| 国产白嫩护士被弄高潮| 国产午夜性爽视频男人的天堂| 岛国无码av不卡一区二区| 91精品免费在线| 白嫩日本少妇做爰| 两个人看的www视频免费完整版| 午夜亚洲国产理论片二级港台二级 | 国产精品区一区第一页| 亚洲久热无码中文字幕人妖| 黄色软件视频大全| 日韩成人a毛片免费视频| 国产精品精品自在线拍| 亚洲精品久久区二区三区蜜桃臀| 久久人搡人人玩人妻精品| 久久人人爽人人爽人人爽| 失禁大喷潮在线播放| 国产亚洲曝欧美不卡精品| 久久久婷婷五月亚洲97号色| 五月婷婷啪啪| 成人未满十八无毛片| 欧美久久久久久久久久| 欧美一区二区鲁丝袜片| 亚洲精品一二三区久久伦理中文| 欧美男人天堂网| 国产女厕所盗摄老师厕所嘘嘘| 无码人妻啪啪一区二区| 98成人网| 超碰国产97| 97se亚洲国产综合自在线尤物| 亚欧av在线播放| 亚洲精品久久久久中文字幕一区| 欧美性xxxxxxxxx| 97毛片| 狠狠干夜夜骑| 亚洲精品国产精品乱码在线观看| 成人在线国产视频| 日韩av午夜在线观看| 风间由美在线观看| 任我爽橹在线视频精品583| 嫩草社区| 青青草自拍视频| 欧美成人视屏| 两个女人互添下身爱爱| 国产综合精品在线| 在线色网站| 欧美激情四区| 成人午夜视频精品一区| 中国熟妇露脸videos| 久久久久欧美精品观看| 国产一区二区三区在线2021| 91亚洲国产成人精品一区| 精品国产一区二区三区av性色| 521香蕉网站大香网站| 国产在线拍揄自揄拍视频| 国产成人av在线免播放观看新| 狠狠综合久久综合88亚洲| 色婷婷五| 日韩免费不卡视频| 久久人体视频| 日韩在线国产精品| 天天摸日日摸狠狠添| 久久99精品久久久久久动态图| 久久国产乱子伦精品| 国产成人精品综合在线观看| 小明成人免费视频| 夜夜天堂| 亚洲啪啪av无码片| 国产91对白在线播放| 欧美国产中文字幕| 狠狠爱网站| 亚洲伊人色综合网站| 午夜羞羞影院男女爽爽爽| 乱色熟女综合一区二区三区 | 亚洲一区二区日本| 色综合五月婷婷| 免费高清av| 国产探花在线观看| 免费成人在线播放| 国产美足白丝榨精在线观看sm| 麻豆果冻传媒精品一区| 国产日韩欧美高清| 国产夫妻露脸| 唐人社导航福利精品| 国产午夜福利不卡在线观看| 日韩精品无码一区二区三区久久久| 亚洲性生活网站| 亚洲成人一区在线观看| 久久综合九色综合97网| 久久久精品影视| 欧美一区2区| 亚洲女线av影视宅男宅女天堂 | 亚洲日本韩国| 午夜男女爽爽爽在线视频| 91在线欧美| 久久99精品国产99久久6| 国产精品毛片完整版视频| 国产色视频网免费| 综合亚洲桃色第一影院| 欧美性狂猛xxxxxbbbbb| 久久精品国产99久久六动漫| 中文字幕无码成人片| 国产成人精品综合久久久久| 天堂一区在线观看| 在线观看中文字幕网站| 无码av专区丝袜专区| 曰本无码不卡高清av一二| 四虎亚洲精品成人a在线观看| 国产九九av| 成人午夜视频免费| 乌克兰极品少妇ⅹxxx做受| 好了av四色综合无码久久| 天天综合色天天综合色hd| 亚洲日本丝袜丝袜办公室| 免费精品一区二区| 国产成人精品三级麻豆| 暖暖视频日本| 国产又色又爽又刺激在线观看 | 色婷婷五月综合激情中文字幕| 国产成人精品视频一区二区三| 水果派解说av| 亚洲三级色| 欧美精品久久99| 日批免费观看| 宅男噜噜噜66网站在线观看| 99热99re6国产在线播放| 98精品国产综合久久久久久欧美| 亚洲欧美精品伊人久久| 天天干网站| 在线不卡aⅴ片免费观看| 久久国产成人亚洲精品影院老金| 日韩视频在线免费| 亚洲激情中文字幕| 亚洲自拍偷拍区| 国产亲子私乱av| 成人三级视频在线观看一区二区| 精品国产sm最大网免费站| 中文中幕a在线| 国产一区二区三区乱码在线观看| 刺激鲁cijilu在线观看| 亚洲最新在线| 欧美在线免费| 在线观看的av网址| 久章草在线无码视频观看| 久久久一级| 夜夜草天天干| 99久久国产露脸精品国产麻豆| 夜夜欢性恔免费视频| www人人干| 国产成人亚洲综合网色欲网| 2021亚洲va在线va天堂va国产| 女人爽到高潮视频免费直播| 免费在线观看a视频| www日日日| 色综合激情网| 久久中文综合| 美国黄色毛片| 美日韩在线视频一区二区三区| 欧美男生射精高潮视频网站| 在线视频黄| 26uuu精品一区二区在线观看 | 丰满少妇熟乱xxxxx视频| 国产成人精品一区二区在线小狼 | www91亚洲| 久久国产高潮流白浆免费观看| a视频免费在线观看| 成人综合在线观看| 草久av| 精品无码久久久久久午夜| 欧美三区四区| 在线v片免费观看视频| 久久久午夜爽爽一区二区三区三州| 国产精品视频在线免费观看| www91视频com| 亚洲嫩草影院| 天天免费视频| 秋霞午夜鲁丝一区二区老狼 | 伊人久久大香线蕉综合75| 欧美午夜一区| 9l视频自拍九色9l视频成人| 国产高清在线精品一本大道 | 免费无遮挡在线观看视频网站| 亚洲国产精品久久久天堂麻豆宅男 | 东京热久久综合伊人av| 国产中文字字幕乱码无限| 日韩在线观看视频一区二区三区 | 国产一区二区三区在线观看视频 | 午夜小福利| 亚洲 欧美 国产 67194| 亚洲一区爱区精品无码| 成人免费b2b网站大全在线| 一区二区三区网| 2018国产在线| 国产素人在线观看人成视频| 亚洲精品无码你懂的| 欧美黄色高清视频| 密桃成熟时在线观看| 午夜之声l性8电台lx8电台 | 性插动态视频| 韩国美女主播娇喘乳奶摇| 密乳av| 日本欧美视频在线观看三区| 国产精品线在线精品| 韩国美女啪啪| 亚洲暴爽av人人爽日日碰| 国产乱人伦av在线a| 日本www网站色情乱码| 亚洲成亚洲成网| 欧美精品久久久久久久自慰| 人妻少妇456在线视频| 色很久| 老女人乱淫| 成人免费精品网站| 亚洲免费影院| 午夜99| av污| 日本精品久久久久久久| 一道本在线观看视频| 福利姬液液酱喷水 | 激情综合婷婷丁香五月情| 男人的天堂在线无码观看视频| 在线观看二区| 亚洲欧美在线视频| 高潮av| 欧美韩国一区| 久久久久9999亚洲精品| 天天澡天天狠天天天做| 国产精品亚洲а∨天堂免| 国产一区免费在线| 人妻中文字幕av无码专区| 西西人体444www高清大胆| 国产女同视频| h在线网站| 日韩射| 成人a视频在线观看| 国产女人第一次做爰视频| 浪潮av激情高潮国产精品香港| 一道本毛片| av国产片| 国产免费无码一区二区三区| 日本不卡在线视频| 精品人妻人人做人人爽夜夜爽 | 国产小精品| 岛国av免费在线| 性欧美俄罗斯乱妇| 国产精品久久久久久亚洲影视内衣| 国产精品久久久久久久久鸭无码| 国产成人一卡2卡3卡四卡视频| 草草免费视频| 久久国产天堂福利天堂| 亚洲熟妇av一区二区三区浪潮| 99精品网站| www色五月com| 日韩干| 欧美色图亚洲色| 国偷自产一区二区免费视频| 鲁丝片一区二区三区毛片| 秋霞av国产精品一区| 亚洲精品国产精品色诱一区| 天天干视频| 亚洲色大网站www永久网站| 国产精品99久久久久久大便| 成人黄色免费视频| 国产乱码久久久久| 亚洲熟妇久久国产精品| 国产精品第一| 亚洲优女在线| 我要看黄色毛片| 午夜无码片在线观看影院| 少妇天天干| 色在线视频观看| 久久99精品久久久久子伦| 久久人人爽人人爽爽久久小说| 亚洲色大成网站www永久| www.色午夜.com| 俺去草| 综合性色| 日韩精品成人无码专区免费| 国产一区二区三区高清在线观看| www.欧美| 一个人看的www免费视频中文 | 中文文字幕中文字幕在线中文乱码| www777色| 刘亦菲三级床视频大全| 曰本一道本久久88不卡| 男人进女人下部全黄大色视频| 国产99视频在线观看| 日韩成视频在线精品| 印度a级片| 伊人色综合网一区二区三区| 强videoshd酒醉| 国产黄色精品| 天天干天天色综合网| 亚洲人成人一区二区三区| 国产九一视频| caopor在线| 亚洲国产成人久久综合区| 成人a√| 亚洲色图小说| 在线一区二区视频| 四虎国产精品永久入口| 成人av片无码免费天天看 | 久久99er6热线精品首页| 国产a视频精品免费观看| 日韩精品中文字幕在线观看| 一群黑人大战亚裔女在线播放| 亚洲第一区无码专区| 亚洲香蕉av在线一区二区三区| 日本高清在线一区至六区不卡视频 | 乱人伦中文无码视频| 亚洲免费精品网站| 亚洲综合毛片| 欧美高潮在线| 白浆网站| 色欲精品国产一区二区三区av| 欧美xxxx做受欧美1314| 国产超碰人人模人人爽人人喊| 亚洲国产丝袜精品一区| 欧美色欲色欲xxxxx| 黄床大片免费30分钟国产精品| 久久精品熟女亚州av麻豆| www.男人天堂| 欧美一区日韩一区| 中文天堂| 日本久久视频| 亚洲成aⅴ人最新无码| 国产午夜一区二区| 性欧美暴力猛交69hd| 热99精品| 动漫av在线| jizzjizzjizz亚洲女| 免费看色| a一级黄色片| 国产精品18久久久久久首页狼| 精品高朝久久久久9999| 国产精品一线二线三线| 国产欧美成人| 无码无套少妇毛多18p| 福利免费在线观看| www毛片| 啪啪影音| 成年午夜精品久久久精品| 极品少妇hdxx麻豆hdxx| 91玉足脚交白嫩脚丫| 国产色视频播放网站www| 日韩欧美专区| 久久天天躁狠狠躁夜夜躁app| 国产午夜精品久久| 最新精品国偷自产在线| 国产夫妻精品| 成人亚洲欧美丁香在线观看| 欧美性猛交xxxx免费看久久| 小辣椒av福利在线网站| 国产精品白嫩极品美女| 影音先锋无码aⅴ男人资源站| 女人被狂躁c到高潮喷水一区二区| 欧美成人aaaaⅴ片在线看| av在线网站无码不卡的| 免费看污黄网站在线观看| 国产日本在线播放| 成人免费毛片免费| 国产又爽又黄又舒服的视频| 国产88久久久国产精品免费二区| 免费无码又爽又刺激高潮软件 | 99热都是精品| 蜜桃av亚洲精品一区二区| 激情插插插| 寡妇av| 国内极品少妇1000激情啪啪千 | 日本黄又爽又大高潮毛片| 亚洲色欲天天天堂色欲网| 97丨九色丨蜜臀| 大又大又粗又硬又爽少妇毛片| 白浆导航| 日本啊v在线| 成人在线免费观看视频| jizzjizz在线播放| 国产a级淫片| 真实国产精品视频400部| 夜鲁鲁鲁夜夜综合视频欧美| 亚洲国产精品无码久久久秋霞2| 青青草.com| 成人午夜片av在线看| 一本av高清一区二区三区| 另类视频在线观看+1080p| 精品成人69xxxyz| 99xav| 成人亚洲区无码区在线点播| 97精品伊人久久大香线蕉app| 岛国av在线播放| 浴室人妻的情欲hd三级| 国产91网址| 亚洲日韩欧美国产另类综合| 综合色小说| 777中文字幕| 国产精品无圣光| 青青伊人国产| 亚洲色av天天天天天天| 嫩草影院久久| 天堂av2020| 天天天干干干| 国产成人综合亚洲色就色| av鲁丝一区鲁丝二区鲁丝三区| 国产一区二区视频播放| 亚洲二区av| 少妇人妻偷人激情视频| 日韩一区二区三区无码a片| 看免费的毛片| a v视频在线观看| 黄色毛片在线| 成人国产精品齐天大性| 干片网在线| 好吊妞无缓冲视频观看| 天天澡天天添天天摸97影院| 亚洲视频在线观看免费视频| 九色在线| 91av短视频| 国产成人无码av片在线观看不卡| 91丨porny在线| 国模私拍av| 极品美妇后花庭翘臀娇吟小说 | 欧美影院一区| a男人天堂| 一级黄色片看看| 亚洲综合一区国产精品| 久久久综合av| 亚洲熟女久久色| 亚洲乱轮视频| 日本视频免费在线| 精品一区中文字幕| 绝顶高潮videos合集| 国产香蕉网| 久章草在线精品视频免费观看| 亚洲女人的天堂www| 国产午夜人做人免费视频| 中文字幕国产精品| 又爽又黄又高潮的免费视频| 99久99| 我爱52av| 先锋影音播放不卡资源| 综合色视频| 免费嗨片首页中文字幕| 亚洲成成品牛牛| 欧美一级免费看| 丰满少妇偷人51视频在线观看| 国产资源在线观看| 五月开心婷婷六月丁香婷| 午夜美女网站| 中文在线中文资源| 超碰久草| 麻豆国产人妻欲求不满| 神马午夜不卡| 天堂va在我观看| 天天弄| 亚洲区一区二区三区| 农民人伦一区二区三区剧情简介| 亚欧在线高清专区| 少妇无码太爽了不卡视频在线看| 欧美片一区二区| 欧美v日韩v亚洲v最新在线| 亚洲免费精品视频| 亚洲va中文在线播放| 女女les互磨高潮国产精品| 欧美国产视频| 成人网站在线进入爽爽爽| 东北农村乱淫视频| 四虎影视免费永久观看在线| 好黄好硬好爽免费视频一| 精品久久久久久久久久久国产字幕| 精品人妻少妇一区二区| 国产第一页av| 乱人伦中文无码视频| 免费看男女做羞羞的事网站| 亚洲s码欧洲m码国产av| 午夜无人区免费网站| 国产一区二区久久久| 亚洲人成毛片在线播放| 变态孕妇孕交av免费看| 国产污视频在线| 西班牙美女做爰视频| 亚洲精品456在线播放牛牛影院| 亚洲国产精品ⅴa在线播放| 日日夜夜操操| 国产系列在线| 91高清国产| 国产一区二区亚洲精品| 精品日本免费一区二区三区| 欧美大胆少妇bbw| a级毛片网| 欧美男人亚洲天堂| 欧美日韩精品免费| 国产精品日韩av在线播放| 国产最爽的av片在线观看| 91资源在线播放| 国语自产精品视频在线区| 日韩视频一区| 欧美一级艳片视频免费观看| 黄色在线观看国产| 久久女同互慰一区二区三区| 亚洲区激情区无码区日韩区| 久久国产影视| 国色精品卡一卡2卡3卡4卡在线| 午夜影院一区二区| 精品国产一区二区三区性色av| 日韩av手机在线免费观看| 一道本av免费不卡播放| 亚洲永久网址在线观看| 精品无码欧美黑人又粗又| 亚洲色欲一区二区三区在线观看| 国产精品无码av天天爽播放器| 91精品视频网站| 婷婷丁香五| 欧美美女一区二区| 天天插天天射| 麻豆人妻无码性色av专区| 亚洲国产日韩一区| 999av视频| 久一视频在线| 国产真实乱在线更新| 亚洲欧美激情国产综合久久久| 五月开心网| 亚洲啊v| 成人av免费看| 曰批女人视频在线观看| 色妞网欧美| 亚洲欧美日韩高清一区| 久久中文字幕人妻熟av女蜜柚m| 国产视频一区二区| 色播在线精品一区二区三区四区| 国产午夜福利短视频| 中文精品久久久久人妻不卡| 麻豆精品视频在线观看| 午夜av在线播放| 成人精品av| 国产免费一区二区视频| 国产成人在线综合| 国产成人av免费观看| 91久久国产综合精品女同国语| 羞羞色男人的天堂| 黄色无遮挡网站| 成人啪啪178| 狠狠色丁香久久婷婷综合图片| 透视性魅力| 4438ⅹ亚洲全国最大色丁香| 久久精品久久久久久久久久久久久| 大ji巴好深好爽又大又粗视频| 国产清纯粉嫩学生白丝在线观看| 欧美内射rape视频| 亚洲涩涩图| 欧美激情一区二区三区高清视频| 7777kkkk成人观看| 国产精品美女久久久网站| 国产精品7777cos| 国产精品视频入口| 182tv午夜| 日韩xxx视频| 国产毛片精品国产一区二区三区| 91精品国产综合久久香蕉922| 暖暖视频 免费 日本社区| 太爽啦高h狂c| 欧美另类高清zo欧美| aa在线视频| 成人免费大全| 亚洲成人av免费在线观看| 国产成人愉拍免费视频 | 亚洲乱码无码永久不卡在线| 一级做a爱片性色毛片| 国产aⅴ精品一区二区三区尤物| 国产边摸边吃奶边做爽视频| 国内精品小视频| 色8久久人人97超碰香蕉987| 国产成人影视| 沙奈朵狂揉下部羞羞动漫| 自拍偷区亚洲综合12p| 亚洲黄色av网站| 最新亚洲国产手机在线| 欧美日韩视频在线第一区| 涩涩999| 国产femdom调教557| 亚洲男人天堂视频| 日韩精品在线不卡| av人人干| 国产欧美日韩专区发布| av特黄| 色午夜av| 国产www视频| 国产精品 视频一区 二区三区| 久久精品aaaaaa毛片| 奇米影视亚洲精品一区 | 毛片女人18片毛片女人免费| 性淫影院| 天天视频亚洲| 亚洲天堂男人av| 性色一区| 久久久久久久国产| 国产丝袜av| 欧美黑人性xxx| 国内精品伊人久久久久av一坑| 欧美精品久久一区二区| 第一福利丝瓜av导航| 日韩精品一卡2卡3卡4卡新区乱码| 最新国产精品拍自在线播放| 真人无码作爱免费视频禁hnn| 亚洲天堂小视频| 2021国产精品香蕉在线观看| 人妻少妇乱孑伦无码专区蜜柚| 精品无码国产av一区二区三区| 久久精品免费看| 国产真实乱偷精品视频免| 狠狠亚洲| 欧美色资源| 丝袜美腿av在线| 亚洲天堂一区在线观看| 禁欲天堂| 国产又黄又硬又湿又黄的视| 国内少妇偷人精品免费| 羞羞答答国产xxdd亚洲精品| 手机版av| 丁香六月啪啪| 久久综合伊人77777麻豆| 亚洲午夜网| 亚洲欧洲日产韩国在线看片| 泰国性xxxx极品高清hd| 国产啪精品视频网站| 欧美精品毛片久久久久久久| 麻豆短视频| 91在线精品入口| 狠狠干2017| 999久久久国产精品| 久久久精品小视频| 色欲久久久中文字幕综合网| 产精品视频在线观看免费| 成人a级黄色片| 超碰男人| 日本肉体xxxx裸体xxx免费| 国产精品成人永久在线四虎| 韩国av不卡| 欧美一区内射最近更新| 精品在线小视频| 西西大胆午夜视频无码| 色婷婷色综合激情国产日韩| 成人国产精品日本在线| 国产 欧美 视频一区二区三区| 亚洲美女色视频| 动漫av一区二区| 99综合网| 亚洲精品成人网站在线 | 天堂av中文在线| julia中文字幕久久亚洲蜜臀| 双性大乳浪受古代h男男| 青青草视频网站| 婷婷久久伊人| 国产熟妇另类久久久久久| 色99999| 337p大胆啪啪私拍人体| 国产亚洲精品美女久久久| 高潮白浆潮喷正在播放| 亚洲成a人无码亚洲成www牛牛| 一级做a爱片| 国产高清在线a免费视频观看| 少妇浪荡h肉辣文大全69| 五十路熟女一区二区三区| 亚洲国产丝袜| 中文字日产乱码六区中国有限公司| 久久接色| 亚洲a区在线观看| 欧美男生射精高潮视频网站| 91黄色免费| 乱人伦人妻中文字幕在线入口| 精品人妻av区波多野结衣| 免费在线小视频| 欧美人与动性xxxxx杂性| 国产成人精品日本亚洲i8| 99精品偷自拍| 色播99| 亚洲乱码av中文一二区软件| 在线看片免费人成视频播| 天天综合av| 欧美激情精品久久久久久变态 | 撕开少妇奶罩疯狂揉吮| 538精品一线| 久久久一本精品99久久精品66直播| 久久久久亚洲精品无码系列| 黑人操日本| 无码av免费一区二区三区试看| 中文字幕综合在线分类| 亚洲狠狠| 国产色欲婬乱免费视频软件| 亚洲国产欧美在线| 色偷偷亚洲男人的天堂| 夫妻性生活自拍| 青青草成人网| 91久久久久久久| 成人看片在线观看| 9久9久女女热精品视频在线观看| 黄网在线免费看| av免费在线播放网址| 天堂资源wwwav啪啪| 亚洲国产一成人久久精品| 97视频人人澡人人爽| 动漫av网站| 国产精品一区二区久久乐夜夜嗨| 日韩欧美高清视频| 凹凸精品一区二区三区| 一边添奶一边添p好爽视频| 日本强伦姧人妻久久影片| 四房播播开心五月| 夜夜躁很很躁日日躁麻豆| 91久色视频| 污污内射久久一区二区欧美日韩| 调教+趴+乳夹+国产+精品| 欧美色呦呦| 国产成人精品日本亚洲第一区| 欧美伊人精品成人久久综合97| 亚洲国产成人久久综合下载| 国产第一福利| 无码精品一区二区三区免费视频| 亚洲aⅴ在线无码天堂777| 久久久久久久久久影院| 美女国产在线| 久久国产高潮流白浆免费观看| 国产精品久久午夜夜伦鲁鲁| 国产丰满人妻一区二区| 日本国产一区二区| 成人污污www网站免费丝瓜| 午夜av福利在线| 久久精品视频7| 人妻少妇精品久久| 国产最新av| 日本激情小视频| 日本免费区| 在线观看亚洲一区| 自拍偷拍欧美日韩| 亚洲精品久久久艾草网| 欧美搡bbbbb搡bbbbb| 三级网站在线| 欧美性猛交xxxx| 欧美色v| 最新永久无码av网址亚洲| 亚洲色欲综合一区二区三区小说| 在线色播| 黄色片一区二区| 国产777| 波多野结衣成人在线| 精品国产乱码久久久软件使用方法| 久久精品国产久精国产| www在线观看免费视频| 色婷婷香蕉在线| 69国产精品久久久久久人妻| 亚洲国产成人无码av在线播放| 亚洲综合少妇| 日本最新偷拍小便视频| 久久精品国产99国产| 亚洲一区福利视频| 久久狠狠一本精品综合网| 国产高潮国产高潮久久久| 黄色片网战| 国产色秀视频在线播放| 亚洲一二区视频| 337p大尺度啪啪人体午夜| 在线看片免费不卡人成视频| 在线观看国产精品电影| 手机看片国产日韩| 午夜福利1000集在线观看| 青青草欧美视频| 九九影院理论片私人影院| 欧美涩涩视频| 国产尤物精品视频| 国产精品久久毛片av大全日韩| 一区二区三区 欧美| 五月色综合| 久久丫亚洲一区二区| 黄色成人免费视频| 欧美最猛性xxxxx黑人巨茎| av三级在线播放| av片国产| 爆操少妇| 小辣椒av福利在线网站| 超碰97观看| 国产一卡2卡3卡四卡精品国色| 极品一区| aⅴ色国产 欧美| 中国一级黄色| 国产在线精品无码二区| 国产精品久久久久这里只有精品| 日韩成人福利| 国产精品一区二区在线观看99| 国产精无久久久久久久免费 | 色淫av蜜桃臀少妇| 五月婷婷狠狠爱| 久久精品99av高久久精品| ts人妖另类精品视频系列| 东北女人啪啪对白| 特级精品毛片免费观看| aaa极品在线| 国产精品人妻一码二码| 色综合久久久久综合一本到桃花网| 久久精品女人| 久久婷婷日日澡天天添 | 国产专区国产av| 无码丰满熟妇bbbbxxx| 羞羞影院午夜男女爽爽影院网站| 人妻中文字幕av无码专区| 国产三级全黄裸体| 中文字幕av一区| 国精产品一品二品国精品69xx| 男女裸交无遮挡啪啪激情试看| 免费日韩在线| 日本亚洲网站| 男人av在线| 无码人妻在线一区二区三区免费| 日韩丰满少妇无吗视频激情内射| 久久一二三区| 伊人春色影院| 日韩精品在线一区| 国产亚洲精品久久久久久国模美| 羞羞视频在线观看免费| 无码专区男人本色| 色综合久久久久综合99| 快色视频网站| 国产 日韩 一区| 在线播放成人| 九色视频丨porny丨丝袜| 国产伦精品一区二区三| 女被男啪到哭的视频网站| 日本最新免费二区| 狠狠色丁香婷婷亚洲综合| 麻豆视频国产| 久久性色av亚洲电影| www日本在线| 激情综| 亚洲精品www久久久久久| 亚洲专区第一页| 亚洲成人一区在线| 日韩中文字幕在线看| 免费草逼视频| 无码人妻久久一区二区三区app| 久久国产精品99国产精| 久久综合色视频| 福利第一页| 全部免费毛片在线播放| 欧美喷潮最猛视频| 免费精品在线| 800av在线播放| 乌克兰少妇性做爰| 88xx成人精品视频| 无码专区中文字幕无码| 亚洲一区福利视频| 国产精品69久久久| 亚洲日韩va在线视频| 理论黄色片| 国产人妻久久精品二区三区特黄| 日韩在线播放视频| 国产九九热| 亚洲丁香婷婷综合久久| 成人羞羞国产免费图片| 苍井空一区二区波多野结衣av| 一区二区三区av波多野结衣| 精品视频在线看| 欧美丰满熟妇bbbbbb| 久久国内精品自在自线波多野结氏| 日本婷婷免费久久毛片| 日本在线看片免费人成视频| 成人国产精品蜜柚视频| 宅男色影视亚洲人在线| 可播放的亚洲男同网站| 美女裸体色黄污视频网站| 91n视频| 米奇7777狠狠狠狠视频| 久久精品无码一区二区小草| 亚洲国产高清在线观看视频| 午夜自产精品一区二区三区| 天天人人综合| 在线看片网址| 一区二区视屏| 性丰满白嫩白嫩的hp124| 日本美女日批视频| 成人精品网| 免费女人高潮流视频在线| 国产精品十八禁在线观看| 免费人成网站| 东京热久久综合久久88| 四虎成人精品永久在线视频| 久久九九网站| 懂色av懂色aⅴ精彩av| 777午夜福利理伦电影网| 亚洲夜夜操| 激情五月网站| 少妇无码av无码去区钱| 性人久久久久| 女仆乖h调教跪趴1v1| 6080亚洲人久久精品| 亚洲91久久| 欧美日韩国产精品一区| 亚洲香蕉伊综合在人在线观看| 国产精品偷拍| 亚洲精品a片99久久久久| 午夜国产亚洲精品一区| 亚洲色在线v中文字幕| 精选国产av精选一区二区三区| 特一级黄色片| 国产啊v在线观看| 在线观看日本| 麻豆视频二区| 国产91黄色| 欧美日韩精品一区二区| 国产高潮好爽受不了了夜色| 青青草91久久久久久久久| 国产在线观看一区二区三区| 色中文字幕| 女人天堂久久爱av四季av| 青青操原| 全部孕妇毛片丰满孕妇孕交| 国产日韩亚洲| 亚洲成人免费影院| 一本之道高清狼码| 伊人看片| 色香av| 全毛片| 国产福利在线视频| 欧美裸体xxx| 99精品久久久中文字幕| 免费看三级毛片| 国产国拍精品av在线观看 | 久久午夜电影网| 二男一女一级一片视频免费| 最近中文字幕免费| 青草伊人久久| 欧美a级网站| 成人欧美一区二区三区黑人孕妇 | 亚洲综合另类小说专区| 伊人久久大香线蕉综合网| 毛片一级片| 成人网在线观看| 李丽珍毛片| 精品少妇一区二区三区视频| 欧美成人免费一区二区三区视频 | 四虎国产在线| 久久久久久免费免费精品软件| 欧美孕妇与黑人孕交| 日韩av地址| 在线播放毛片| 综合网婷婷| 中文字幕a∨在线乱码免费看| 国产另类xxxx| 日韩天堂网| 黄色性情网站| 八戒八戒在线www视频中文| 午夜毛片视频| 4438x全国最大色| 亚洲高清视频在线播放| 777人体大胆中国人体哦哦| 特级性生活片| 中文成人无字幕乱码精品区| 欧美一级啪啪| 国产日韩综合一区二区性色av| 成人性午夜视频在线观看| 欧美不卡在线观看| 中文字幕在线精品视频入口一区| 国产永久在线| 一区二区三区在线免费观看视频| 日韩乱码人妻无码中文字幕久久| 99久久国产自偷自偷免费一区| 4hu四虎影视入口| 久久久99日产| 一区二区三区四区五区视频| 放荡的美妇在线播放| 免费情侣作爱视频| 男人av网站| 国产高清视频一区三区| 亚洲美女啪啪| 国产精品17p| www.日韩系列| 白嫩丰满少妇xxxxx性张津瑜 | 中国杭州少妇xxxx做受| 激情图片区| www色99| 狠狠综合久久久久综合网| 男女黄色毛片| 天天在线看无码av片| 久久99综合| 风间由美一二三区av片| 大陆av在线| 女人舌吻男人茎视频| 天天干夜夜干| 欧美性色黄大片手机版| 国产成人综合久久久久久| 亚l州综合另中文字幕| 亚洲精品久久久久久无码色欲四季 | 午夜三级a三级三点自慰| 男人的天堂伊人| 成人精品毛片国产亚洲av十九禁| 国产三级欧美三级| 日韩精品tv| www.涩涩爱| 国产成人精品久久亚洲高清不卡| 亚洲精品久久久久久蜜桃| 黄色网入口| 日韩欧美一区三区| 欧美级毛片| 青春草免费视频| 极品国产主播粉嫩在线| 九色综合九色综合色鬼| 19韩国主播青草vip| 亚洲精品无码久久久久app| 精品久久久久久久久久久aⅴ| 一区国产精品| 九草av| 毛茸茸熟妇丰满张开腿呻吟性视频| 极品久久久| 国产性生活视频| 午夜视频91| 不卡av在线免费观看| 五月天婷婷色| 久久裸体视频| 国产山东熟女48嗷嗷叫| 日韩高清中文字幕| 女人高潮内射99精品| 亚洲h片| 精品国产乱码久久久久久三级人| 国产高清精品在线观看| 劲爆欧美第一页| 粉嫩色av| 成年人网站在线免费观看| 成人激情四射网| 国产精品国产自线拍免费不卡| 瑜伽美女健身视频集锦| 日本少妇做爰免费视频软件| 日日射夜夜| 91人网站免费| 久爱视频在线观看| 一级国产黄色片| 337p日本欧洲亚洲高清鲁鲁| 综合色吧| 国产一级二级三级在线观看| 亚洲欧洲综合网| 亚洲97视频| 激情深爱五月| 久久网站免费看| 国产高清无套内谢免费| 一本大道久久a久久精品综合1 | 久久综合97丁香色香蕉| 亚洲а∨精品天堂在线| 午夜成人亚洲理论片在线观看| 久久久精品免费看| 日韩激情一区二区三区| 在线观看国产精品普通话对白精品| 色播激情| 国产传媒一级片| 免费黄色的网站| 精品国产三级a∨在线无码| 久久99亚洲精品久久久久| 看免费黄色一级片| 无码人妻久久1区2区3区| 激情黄色小说网站| 国产久草视频| 五月综合色| 国产成人99久久亚洲综合精品| 国产一卡2卡3卡四卡精品app| 青青视频在线免费观看| 未成满18禁止免费无码网站| 久久精品天堂| 久久久麻豆| 欧美级毛片| 午夜影院色| 四虎永久网址| 中文字幕一卡二卡三卡| 色香蕉在线视频| 嫩草亚洲| 在线欧美精品一区二区三区| 关秀媚三级露全乳| 狠狠干免费视频| 精品1区2区| 国产熟妇搡bbbb搡bb七区| 国产麻豆md传媒视频| 黄色一级片在线播放| 中文国产在线观看| 日韩在线欧美| 丝袜美腿中文字幕| 国产精品18久久久久久久久| 欧美视频一区二区| 91玉足脚交白嫩脚丫在线播放| 欧美日韩在线精品一区二区| 婷婷久久香蕉五月综合加勒比| 91精品视频在线播放| 野花社区免费观看在线www| 日本中文不卡| 一道本一区二区| 老司机深夜福利网站| 成人污污www网站免费丝瓜| 日韩欧美激情兽交| 五月婷婷激情综合| 国产精品男女啪啪| 欧美无砖专区免费| 久久国产精品成人影院| 69天堂人成无码麻豆免费视频 | 亚洲精品免费在线观看| 午夜无码片在线观看影院y| 国内精品伊人久久久影视| 人人做天天爱夜夜爽2020| 香蕉av久久一区二区三区| 高大丰满欧美熟妇hd| 日本三级免费| 涩涩久久| 国产无在线观看软件| 国产福利一区二区麻豆| 日韩精品卡通动漫网站| 不卡二区| 在线免费观看成人| 天天拍天天干| 91在线看黄| 日本高清毛片中文视频| 亚洲а∨天堂2019在线无码| 国产免费女女脚奴视频网| 国产一级淫片a直接免费看| 香蕉人人精品| 国产欧美在线看| 久草视频福利| 91视频 -- 69xx| 91精品91久久久中77777老牛| 国产毛1卡2卡3卡4卡免费观看| 成人试看120秒体验区| 天天舔天天射| 殴美一级片| 亚洲精品九九| 日韩av无码中文一区二区三区| 亚洲人成无码网站久久99热国产 | 黄色试频| 色婷婷av一区二区| 亚洲欧美日韩综合在线| 一级黄色毛片| 国产亚洲日韩欧美另类丝瓜app| 欧美色99| 操欧美老逼| 成人激情综合| 免费床视频大全叫不停欧美| 免费的av片| 日本免费高清视频| 国产精品国产三级国产有见不卡| 亚洲精品日本久久一区二区三区| 亚洲四区| 久久久免费精品re6| 夜夜骚av| 精品网站一区二区三区网站| 国产精品天天在线午夜更新| 盗摄精品av一区二区三区| 性做久久久久久免费观看| 国产精品xxxx18a99| av日韩免费在线观看| 亚洲欧洲另类| 伊人福利| 少妇高潮大片免费观看| www.av天天| 67194熟妇在线永久免费观看 | 无遮掩60分钟从头啪到尾| 日韩精品一区二区午夜成人版| 亚洲色成人网站www永久男男| 狠狠色噜噜狠狠狠合久| 亚洲视频在线免费观看| 加勒比一区二区无码视频在线| 亚洲不卡视频| 亚洲国产精品久久久久婷婷图片| 影音先锋新男人av资源站| wwwxx日本| 噜啪啪| 一卡二卡国产| 欧美日韩国产专区一区二区| wwwxxx在线| 天天爽亚洲中文字幕| 仙踪林毛片| 国产美女无遮挡免费| 乌克兰少妇xxxhd做受| 免费网站内射红桃视频| 狠狠色噜噜狠狠狠狠69| 免费观看毛片网站| 欧美黑人疯狂性受xxxxx喷水| 免费看国产精品3a黄的视频| 丰满老女人乱妇dvd在线播放| 99精品久久99久久久久胖女人| 亚洲第一无码精品一区| 欧美性大片xxxxx久久久| 亚洲国产精品无码java| 色综合成人| 国产h在线观看| 国产高清在线精品二区| 2021亚洲国产成a在线| 成人午夜网| 成人h网站| 欧美综合乱图图区乱图图区| 日韩人妻无码精品系列| 成人爽a毛片在线视频| 观看国产色欲色欲色欲www| 日本网站在线免费观看| 国产zzjjzzjj视频全免费| 一级v片| 91麻豆精品91aⅴ久久久久久| 亚洲一区在线看| 二级黄色毛片| 成人精品一区二区久久久| 丁香婷婷亚洲| 精品国产v无码大片在线观看| 亚洲国产av无码一区二区三区| 欧美亚洲免费| 亚洲国产精彩中文乱码av| 深夜在线免费视频| 一区二区三区国产在线| 欧美一本在线| 少妇学院在线观看| 青草福利在线| 天堂亚洲2017在线观看| 亚洲 中文 欧美 日韩 在线观看| 密桃av在线| 色婷婷色| 女警一级淫片免费放| 国产av久久人人澡人人爱| 亚洲一区二区三区自拍公司| 自拍区小说区图片区亚洲| 日韩久久精品视频| 免费观看潮喷到高潮大叫网站| av综合色| 亚洲一区二区免费视频| 成人爱爱网站| 亚洲精品一区二区三区98年| 成人97| 久久精品国产免费播| 国产免码va在线观看免费| 网红av在线| 欧美一卡2卡3卡4卡新区在线| 欧美精品videossex另类日本| 攵女h文1v1| 亚洲国产精品成人天堂| 毛茸茸厕所偷窥xxxx| 看黄色一级| 羞羞午夜福利免费视频| 国产在线国偷精品免费看| 51免费看成人啪啪片| 国产视频一二三| 国产毛1卡2卡3卡4卡免费观看| 三级视频网| 国外成人在线视频| 在线观看的av网址| 神马久久久久久久久| 激情五月婷婷丁香| 亚洲国产精品成人无码区| 欧美国产在线一区| 成人中文视频| 成人三级在线播放| 日韩特级毛片| 青青偷拍视频| 国产精品黄色片| 国产精品伦| 好紧好爽好深再快点av在线| 色四虎| 加勒比日本在线| 麻豆视频精品| 男女嘿咻激烈爱爱动态图| 女人黄色毛片| 欧美性猛交xxxx免费看| 91视频免费在观看| 99国产精品欧美一区二区三区| 嫩草av久久伊人妇女超级a| 久久综合在线| 91九色丨porny丨丝袜| 亚洲精品国产视频| 毛片免费播放| 一本加勒比hezyo无码专区| 亚洲欧洲日产国码无码动漫| 欧美福利网| 爱爱综合| 亚洲伊人久久大香线蕉综合图片| 欧美欧美欧美欧美| 精品国产美女福到在线| 特黄老太婆aa毛毛片| av在线黄| 日本久久综合| 欧美成人片在线观看| 日本在线一级片| 亚洲欧洲无码一区二区三区| 国产好大好紧好爽好湿视频唱戏| 亚洲一区二区三区av无码| 国产成人精品免费视频大全最热| 色撸撸在线观看| 国产l精品国产亚洲区久久| 国产亚洲欧美在线| 极品人妻少妇一区二区三区| xxxx国产一二三区xxxx| 男女一进一出粗大楱视频| 男人的天堂av女优| 久久久水蜜桃| 中文人妻熟女乱又乱精品| 欧美日韩视频在线播放| 日本精品巨爆乳无码大乳巨| 国产午夜毛片v一区二区三区| 人与动物av| 成人av资源| 91中文视频| 无码少妇一区二区三区芒果| 国产69精品久久久久久久| 影音先锋中文字幕无码资源站| 黑人大荫道bbwbbb高潮潮喷| 国产一区二区三区免费观看在线| 欧美a v在线播放| 亚洲精品欧美日韩一区| 最新69国产成人精品视频| 午夜精品网站| 二区三区| 欧美色图3p| 国产成人午夜在线视频a站| 国产精品主播视频| 亚洲精品美女| 国产亚洲精品福利视频| 一级特黄aa大片| 久久综合激激的五月天| 亚洲成av人片无码迅雷下载| 国产91色在线| 综合av| 蜜臀aⅴ一区二区三区| 日本成人福利视频| 色777狠狠狠综合| 国产成人精品日本亚洲一区| 99精品久久久久| 双性受惨叫扩张调教虐宫h| 天天爱天天草| 国产免费专区| 久久久久国产精品午夜一区| 黄色av三级| 又污又黄又无遮挡的网站| 成人夜晚视频| 欧美日韩在线第一页| 日日日网站| 日日操日日碰| 免费人成网站免费看视频| 国产毛片精品一区二区| 黄色插插视频| 国产黄色毛片视频| 色综合天天| ts人妖在线观看| 国产一级特黄aaa大片| 九色福利| 黄色片视频免费看| 亚洲中文字幕日本无线码| 成人a毛片视频免费看| 中文字幕一区二区人妻性色| 亚洲五月综合缴情在线观看| 国产精品伦一区二区三级视频永妇| 亚洲午夜精品久久| 中国性少妇内射xxxx狠干| www日本在线视频| 一性一交一口添一摸视频| 色男人的天堂| 精品一区二区三区四区外站 | 欧美日本高清在线不卡区| 国产精品 色| 日本少妇自慰免费完整版| 99久久夜色精品国产亚洲| 国产精品亚洲mnbav网站| 日韩一级片免费| 国产思思99re99在线观看| 性福宝av| 亚洲精品播放| 天堂在线成人| 日韩精品一区二区中文字幕| 国产肉丝袜在线观看| 亚洲日韩电影久久| 亚洲欧美午夜| 精品视频免费观看| 亚洲精品视频二区| 国产精品久久久久久久免费看 | 国产午夜福利片1000无码| 国产精品一区二区三区不卡| 国产欧美日韩综合精品一区二区| 亚洲国产成人精品一区刚刚 | 亚洲乱码中文字幕久久孕妇黑人| 日韩中文字幕观看| 美女mm131午夜福利在线| 国产又爽又黄的激情精品视频| 粉嫩av久久一区二区三区| 在线观看成年人视频| 国产成人精品日本亚洲专区| 国产亚洲精品久久久久久久软件| 哺乳援交吃奶在线播放| 国产性夜夜春夜夜爽| 中老年熟妇激情啪啪大屁股| 国产98在线 | 免费| 国产精品99久久99久久久不卡| 久草午夜| 国产又黄又猛又粗又爽视频| 久久精品av麻豆| 国产成人精品亚洲日本语言| 国产成人精品日本亚洲专区| 奇米777四色成人影视| 国产对白刺激真实精品91 | 久草资源网| 亚洲精品午夜久久久| 色窝在线| 国产无套水多在线观看| 六月色丁香| av不卡在线| 黄片a级毛片| а√在线中文网新版地址在线 | 午夜视频欧美| 在线观看免费人成视频色9| 色五五月| 日韩免费在线播放| 久久久久久久久888| 欧美有码在线观看| 无码射肉在线播放视频| 三级不卡| 中文字幕日本乱码仑区在线| 免费特黄视频| 国产一级做a爰片久久毛片99| 岛国二区三区| 女人和拘做爰正片视频| 成人性欧美丨区二区三区| 亚洲成aⅴ人片精品久久久久久| 午夜久久久久久久久久一区二区| av天堂久久天堂av| 999久久久久久久久6666| av在线天堂| 国产在线偷观看免费观看| 完全免费av| 最新国产网址| 亚洲精品亚洲人成在线观看| 操极品女神| 男女性生活毛片| 亚洲麻豆| 91成人毛片| 五月天国产成人av免费观看| 成人精品综合免费视频| 国产女黄3片| 国产无遮挡又爽又刺激的视频老师| 午夜之声l性8电台lx8电台| 午夜成人理论无码电影在线播放| 亚洲精品综合五月久久小说 | 日韩精品影视| 天堂在/线资源中文在线| 国产夫妻自拍av| 东北粗壮熟女丰满高潮| 日韩aⅴ在线观看| 久久久久久天堂| 亚洲色大成网站www尤物| 一级全黄少妇性色生活片毛片 | 久久黄色小视频| 国产一区二区三区av网站| 亚洲中文字幕无码日韩| 人人干超碰| 国产真实迷奷在线播放| 欧美三级日本三级| 成人av网站在线观看| 亚洲aⅴ片| 97久久久久久久| 鲁一鲁av2019在线| 风间由美av| 国产精品久久久久久久久久久免费看| 九九九九九精品| 欧美日韩aa| 久久亚洲视频| 在线观看黄色网| 毛片黄色片| 日本乱子伦一区二区三区| 欧美日韩色另类综合| 97影音| 成年人精品视频| 午夜小福利| 亚洲中文字幕va福利| 秋霞人妻无码中文字幕| 成人免费淫片aa视频免费| 91av麻豆| 日韩激情视频一区二区| 欧美日韩高清| 久久只有这里有精品4| 成 年 人 黄 色 大 片大 全| 又爽又黄又无遮挡的视频在线观看 | 亚洲国产剧情| 国产情侣草莓视频在线| 亚洲国产成人久久一区| www.国产在线视频| 初开小嫩苞一区二区三区四区| 精品国产免费观看久久久| 性色av极品无码专区亚洲| 欧洲免费av| www国产| 小泽玛利亚一区二区免费| 亚洲午夜免费福利视频| 国产天天综合| 男女av在线| 青青草激情视频| 亚洲裸男自慰gv网站| 国产字幕在线观看| 欧美在线观看a| 日韩色在线| 日韩欧美亚洲精品| 国产成人愉拍免费视频| 思思久久96热在精品国产| 日本高清免费在线| 国产在线不卡精品网站| 一区二区三区福利视频| 久久久久久久久淑女av国产精品| 欧美啪啪小视频| 欧美人与动交视频在线观看| 麻豆tv入口在线看| 国产精品无码av天天爽播放器| 亚洲第一成年人网站| 欧美另类69| 亚洲一二三在线| 成人国内精品久久久久一区| 激情五月婷婷色| 外国三级毛片| 波兰性xxxxx极品hd| 欧美在线综合| 午夜精品一区二区三区aa毛片| 免费精品国偷自产在线在线| 女女互揉吃奶揉到高潮视频| 国产精品久久天堂噜噜噜| www夜夜骑| 日本xxxx色| 欧美日韩精品一区二区视频| 国产奶水涨喷在线播放| 色涩av| 欧美黄色一级大片| 美女裸体跪姿扒开屁股无内裤| 欧日韩一区二区三区| 日韩欧美激情在线| 亚洲美女中文字幕| 国产精品精品视频一区二区三区| 黄色片特级| 97国产在线视频| 激情五月婷婷久久| 米奇狠狠干| vvvv99日韩精品亚洲| 456成人精品影院| 日韩av成人在线| 久久久中文字幕日本无吗 | 亚洲精品无码久久久久去q| 国产视频中文字幕| hs在线观看| 自拍偷拍国产精品| 国产gv在线观看受被做哭| 欧美黄色大片网站| 中国极品少妇xxxx做受| 色偷偷综合网| 性一交一乱一伧国产女士spa| 五月激情婷婷丁香综合基地| a级黄色影片| 隔壁放荡人妻bd高清| 狠狠色综合色综合网络| 狠狠色丁香婷婷综合潮喷| 亚洲综合福利| 中文字幕一区二区三区在线观看| 久久久www成人免费毛片女| 色呦呦在线观看视频| 亚洲国产精品成人综合在线| 精品国产av一区二区三区| 久久久免费看片| 亚洲wwww| 国产精品噜噜噜66网站| 国产二区自拍| 双性人做受视频| 同性做爰猛烈全过程| 性xxxxxxxxx18欧美| 欧美国产综合色视频| 久久精品国产精品国产一区| 伊人色综合久久天天人守人婷| av在线资源| 天堂√在线| 国产黄在线| 欧美精品成人v高清视频| 51成人精品网站| 一本色道久久综合狠狠躁篇怎么玩| av中文字幕在线免费观看| 91网页在线观看| 182tv午夜| 久久久久国产精品人妻aⅴ免费| 精品亚洲成a人在线观看| 久久99影院| 亚洲国产日韩av| 久操激情| 成人免费视频软件网站| 精品成人a区在线观看| 91精品老司机久久一区啪| 太爽啦高h狂c| 亚洲午夜1000理论片aa| 亚洲天堂bt| 一点色成人网| 精品一区二区免费| 成年美女黄网站色大免费视频 | 国产欧美日韩一区二区加勒比| 无码中文字幕av免费放dvd | 亚洲国产成人久久精品软件| 久久99热狠狠色一区二区| 九九热线有精品视频| 亚洲va韩国va欧美va精四季| 亚洲中文字幕无码乱线久久视| 4567少妇伦理| 免费亚洲一区二区| 日韩v91综合区| 嫩草av久久伊人妇女超级a| 成人一区av偷拍| 国产av导航大全精品| 777777av| 内谢老女人视频在线观看| 国产91在线看| 日韩性网站| 中曰韩黄色片| 成年人视频在线播放| 久99视频| 日本天堂免费a| 欧美视频一区在线| 狠狠色先锋资源网| 国产午夜aaaaa片在线影院| 欧美亚洲色综久久精品国产| 国产成人片一区在线观看 | 亚洲中文精品久久久久久不卡| 亚洲国产综合专区在线播放| 精品一区二区不卡| 99久久久久久久| 黄色avav| 久久美女性网| 欧美a在线| 第一色网站| 97在线精品视频| 天堂8在线天堂资源bt| 十八禁视频在线观看免费无码无遮挡骂过 | 在线天堂新版最新版在线8| 国产又粗又长又黄视频| 一本清日本在线视频精品| yy6080午夜| 亚洲色图.com| 波多野吉衣av在线| 无收费看污网站| 亚洲爆爽| 99精品久久精品一区二区| 色播激情| 国产亚洲欧美精品一区| 四虎成人永久在线精品免费 | 玖玖在线精品| 午夜无码片在线观看影视| 欧美丰满bbw| 夜夜艹天天干| 一级片视频免费| 国产亚洲情侣一区二区无| 久久午夜免费观看| 欧美人禽杂交狂配| 欧美性生交活xxxxxdddd| 免费国偷自产拍精品视频| 欧美一级片网站| 精品无码午夜福利理论片| 亚洲手机av| 国内精品伊人久久久久av影院| 天天射中文| 日本道专区无码中文字幕| av毛片久久久久午夜福利hd| 亚洲婷婷综合久久一本伊一区| 天天躁日日躁狠狠躁性色avq| 无码av专区丝袜专区| 国产成人无码精品久久久露脸| 国产下药迷倒白嫩美女网站| 中文www新版资源在线| 男女啪啪高清无遮挡免费| 98国产视频| 色偷偷成人网免费视频男人的天堂| 亚洲伊人色综合www962| 色综合色综合色综合| 亚洲人成色44444在线观看| 亚洲精品乱码久久观看网| 日韩欧美卡一卡二卡新区| 被窝福利片久久福利片| 成人午夜高潮a∨猛片| 国产簧片| 国产视频一二三| 五月天婷婷爱| 性欧美长视频| 日韩av免费在线看| 师尊双性精跪趴灌满h视频| 国产精品爆乳奶水无码视频| 亚洲精品国产一区| 婷婷色伊人| 国产免费一区二区| 激情综合网婷婷| 456欧美成人免费视频| 99日本精品永久免费久久| 特黄特黄欧美亚高清二区片| 欧美激情视频一区二区三区免费 | 国产精品无码久久久久久| 日本中文字幕人妻不卡dvd| 狠狠色综合久久久久尤物| 日韩不卡av在线| 国产xxxx成人精品免费视频频| 久久国产精品一国产精品| 欧美wwwwww| 口爆吞精一区二区久久| 日韩第1页| 夜夜爱夜夜操| 国产在线精品一区二区| 日本疯狂做爰xxxⅹ高潮视频| 亚洲中出| 国产成人av国语在线观看| 手机在线免费观看av片| 国产精品最新免费视频| 成人性三级欧美在线观看| 狠狠爱亚洲综合久久| 国产看黄a大片爽爽影院| 色网站免费| 日韩av午夜在线观看| 在线观看91精品国产入口| 日韩三级毛片| 一区二区三区鲁丝不卡麻豆| 中国美女黄色一级片| 中文字幕一线产区和二线| 2021av| 亚洲欧美日韩专区| 亚洲www视频| 国产麻豆剧果冻传媒白晶晶| 高清精品国内视频| 日韩视频一区二区三区在线播放免费观看 | 九九热在线播放| 欧美寡妇性猛交ⅹxxx| 在线综合亚洲欧美网站| 国色天香中文字幕在线视频| 久久夜色撩人精品国产小说 | 琪琪无码午夜伦埋影院| 成人小视频免费看| 夜夜嗷| 亚洲天堂毛片| 日本护士xxxxhd少妇| 91精品久久久久久久久久入口| 久久综合av免费观看| 人妻无码久久一区二区三区免费| 少妇高潮大叫好爽| 91精彩视频在线观看| 国产情侣啪啪| 一本大道av伊人久久综合| 午夜偷拍视频| 91蝌蚪91porny国语| 国产精品区一区第一页| 国产免费专区| 国产在线国偷精品产拍免费yy| 成人免费视频一区二区| 正在播放的国产a一片| 香港三日本三级少妇少99| 丰满人妻翻云覆雨呻吟视频| 午夜aaa| 成年女人a毛片免费视频| 中文天堂最新版在线www| 尤物亚洲国产亚综合在线区| 欧美亚洲精品suv一区| 国产成人麻豆亚洲综合无码精品| 亚洲天堂2018av| 日韩和欧美一区二区| 久久精品亚洲酒店| 国模小丫大尺度啪啪人体| 日日插夜夜爽| 亚洲欧洲天堂| 欧美国产不卡| 先锋影音av最新资源网| 国产特黄一级片| 婷婷六月天在线| 三级毛片网| 亚洲爆乳中文字幕无码专区网站| 激情网五月天| 爱爱视频在线看| 亚洲免费影视| 看特级黄色片| 99精品一级欧美片免费播放| xnxx女第一次| 成人免费版| 狠狠色丁香婷婷综合欧美| 五月天色站| 日韩精品亚洲一区| 久久免费99精品国产自在现线| 免费在线观看中文字幕| 久久视频网| 噼里啪啦在线高清观看免费| 九九热精品| 国产麻豆网| 亚洲成年女人av毛片性性教育| 免费高清a级南片在线观看| 国产精品久久久久成人| 扒开双腿猛进入喷水高潮叫声| 欧美性猛交性大交| 超碰女人| 久色阁| 偷偷操不一样的99| 欧美一区久久久| 888久久| 一级欧美日韩| 国产精品玖玖玖| 一级免费黄色片| 国偷自产一区二区三区在线视频| 黄网站免费在线观看| 亚洲欧美日韩中文播放| 国产精品99久久久久久猫咪| 狠狠色狠狠色综合日日不卡| 久久久精品999| 国产女人18水真多18精品一级做| 日本亚洲vr欧美不卡高清专区| 久草播放| 一道本毛片| 久久久青草婷婷精品综合日韩 | 日韩欧美国产综合| 亚洲中文字幕无码久久| 色偷偷一区二区无码视频| 婷婷情更久日本久久久片| 二区欧美| 91毛片视频| 亚洲乱码av中文一二区软件| 少妇在线播放| 日本女人黄色| 黄色视屏在线看| 亚洲熟女乱综合一区二区在线| 免费观看日批视频| 亚洲第一页色| 制服丝袜美腿一区二区| 久久精品黄| 国产乡下三级全黄三级| 欧美精品观看| 熟女人妻aⅴ一区二区三区60路 | 日韩av在线看| 中文字幕制服丝袜| 欧美大屁股bbbbxxxx| 国产精品9999| 国产福利免费视频不卡| fee性满足he牲bbw| 国产三级按摩推拿按摩| 成人影院www蜜桃网站| 亚洲美女久久| 91久久久久国产一区二区| 国产一级片在线播放| 天堂va欧美va亚洲va老司机| 国产精品制服丝袜| 在线观看污视频网站| 快色污| 国产精品黑色丝袜在线观看| 一区二区人妻无码欧美| 操天天| 国产黄色片在线免费观看| 天天爽天天爽天天片a| 精品无人区一码二码三码四码| 18禁裸男晨勃露j毛网站| av中文字幕潮喷人妻系列| 国产精品美女久久久浪潮av| www青草| 成人av国产| 成人中文视频| 日一本二本三本在线2021| 黄色av网页| 玖玖综合网| 国产精品麻豆欧美日韩ww| 亚洲精品aaa| 欧美精品久久久久久久久久丰满| 韩国无码无遮挡在线观看| 日韩成人自拍| 天天夜夜啦啦啦| 日韩欧美一二三区| 91福利社区在线观看| 久久99亚洲精品久久99果| 亚洲免费色| 欧美日韩三级在线观看| 韩国美女vip内部1101福利| 日韩在线观看精品| 蜜色影院| 免费观看又色又爽又黄的传媒| 亚洲午夜未满十八勿入| 精品无码成人片一区二区| 麻豆视频网| 欧美日韩精品在线播放| 西西人体大胆午夜视频| 深夜av在线播放| 亚洲激情第一页| 人妻无码不卡中文字幕系列| 理伦少妇片一级| www激情五月com| 国产粉嫩小泬在线观看泬| 久久国产精品99久久久久| 一本到综在合线伊人| 真人第一次毛片| 97人人澡人人深人人添| 91国在线| 亚洲网站视频| 欧美破苞系列二十三| 高清性欧美暴力猛交| fc2ppv在线观看| 青草青草视频2免费观看| 中文字幕久久久久人妻| 午夜影院一区| 97在线免费观看| 天天爽夜夜爽人人爽免费| 国产喂奶挤奶一区二区三区| 精品人妻大屁股白浆无码| 综合人妻久久一区二区精品| 五月综合在线| 国产精品永久久久久久久久久| 日韩二区三区| 日本黄色免费大片| 色偷偷偷久久伊人大杳蕉| 久久精品中文字幕免费| 亚洲精品91天天久久人人| 超碰牛牛| 色网站在线观看| 一卡二卡三卡在线视频| 91.成人天堂一区| 久久综合狠狠| 91在线超碰| 国产欧美精品一区| 中国videosex高潮hd| 亚洲国产成人精品无码区在线秒播| 天堂网2020| 怀孕挺大肚子疯狂高潮av毛片| 亚洲国产精品久久久久秋霞| 永久福利视频| 久久精品女人天堂av免费观看| 亚洲人成色44444在线观看| 亚洲女优在线| aaa欧美色吧激情视频| 精品福利视频一区二区|